\[ \textbf{If } | \text{Adj} \ A | = x \text{ and } | \text{Adj} \ B | = y, \text{ then } \left( | \text{Adj}(AB) | \right)^{-1} \text{ is } \]
Let \( A = [a_{ij}] \) be a \( 3 \times 3 \) matrix with positive integers as its elements. The elements of \( A \) are such that the sum of all the elements of each row is equal to 6, and \( a_{22} = 2 \).
The mean deviation about the mean for the following data is:
A student has to write the words ABILITY, PROBABILITY, FACILITY, MOBILITY. He wrote one word and erased all the letters in it except two consecutive letters. If 'LI' is left after erasing then the probability that the boy wrote the word PROBABILITY is: \
In a triangle \(ABC\), if
\[ (a - b)^2 \cos^2 \frac{C}{2} + (a + b)^2 \sin^2 \frac{C}{2} = a^2 + b^2, \]
then \( \cos A \) is: