\[ f(x) = \begin{cases} \frac{(4^x - 1)^4 \cot(x \log 4)}{\sin(x \log 4) \log(1 + x^2 \log 4)}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases} \]
Find \( e^k \) if \( f(x) \) is continuous at \( x = 0 \).
\[ y = \sqrt{\sin(\log(2x)) + \sqrt{\sin(\log(2x)) + \sqrt{\sin(\log(2x))} + \dots \infty}} \]
Find \( \frac{dy}{dx} \) for the given function:
\[ y = \tan^{-1} \left( \frac{\sin^3(2x) - 3x^2 \sin(2x)}{3x \sin(2x) - x^3} \right). \]
The length of the normal drawn at \( t = \frac{\pi}{4} \) on the curve \( x = 2(\cos 2t + t \sin 2t) \), \( y = 4(\sin 2t + t \cos 2t) \) is:
If water is poured into a cylindrical tank of radius 3.5 ft at the rate of 1 cubic ft/min, then the rate at which the level of the water in the tank increases (in ft/min) is:
The function \( y = 2x^3 - 8x^2 + 10x - 4 \) is defined on \([1,2]\). If the tangent drawn at a point \( (a,b) \) on the graph of this function is parallel to the X-axis and \( a \in (1,2) \), then \( a = \) ?
If \( m \) and \( M \) are respectively the absolute minimum and absolute maximum values of a function \( f(x) = 2x^3 + 9x^2 + 12x + 1 \) defined on \([-3,0]\), then \( m + M \) is:
Evaluate the integral: \[ \int \frac{\sec x}{3(\sec x + \tan x) + 2} \,dx \]
Evaluate the integral: \[ \int \frac{dx}{4 + 3\cot x} \]
Evaluate the integral: \[ \int \frac{dx}{(x+1)\sqrt{x^2 + 4}} \]
Evaluate the integral: \[ \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{dx}{\sec^2 x + (\tan^{2022} x - 1)(\sec^2 x - 1)} \]
Evaluate the integral: \[ I = \int_{-\frac{\pi}{15}}^{\frac{\pi}{15}} \frac{\cos 5x}{1 + e^{5x}} \, dx \]
The area of the region (in square units) enclosed by the curves \( y = 8x^3 - 1 \), \( y = 0 \), \( x = -1 \), and \( x = 1 \) is:
The general solution of the differential equation: \[ (6x^2 - 2xy - 18x + 3y) dx - (x^2 - 3x) dy = 0 \]