To solve the problem, we are given the quartic equation:
\[
x^4 - x^3 - 16x^2 + 4x + 48 = 0,
\]
and we know that the sum of two of its roots is zero. Let the roots be \(\alpha, \beta, \gamma, \delta\), with \(\alpha + \beta = 0\). We are tasked with finding the value of \(\alpha^4 + \beta^4 + \gamma^4 + \delta^4\).
Step 1: evaluate the calculation
Using the identity for the sum of fourth powers of roots:
\[
\alpha^4 + \beta^4 + \gamma^4 + \delta^4 = (\alpha + \beta + \gamma + \delta)^4 - 4(\alpha + \beta + \gamma + \delta)^2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta) \]\[+ 4(\alpha + \beta + \gamma + \delta)(\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta) + 2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta)^2 - 4\alpha\beta\gamma\delta.
\]
Substitute the known values:
\[
\alpha^4 + \beta^4 + \gamma^4 + \delta^4 = 1^4 - 4(1)^2(-16) + 4(1)(-4) + 2(-16)^2 - 4(48).
\]
Simplify:
\[
\alpha^4 + \beta^4 + \gamma^4 + \delta^4 = 1 + 64 - 16 + 512 - 192 = 369.
\]
Final Answer:
\[
\boxed{369}
\]