Step 1: Use substitution
Let \( u = \cos 3x + 2\sin 3x \), then differentiate:
\[
du = (-3\sin 3x + 6\cos 3x)dx.
\]
Rewriting,
\[
I = \int \frac{du}{u} - \frac{4}{5} \int dx.
\]
Step 2: Compute the integral
\[
I = \frac{7}{15} \log |u| - \frac{4}{5} x + c.
\]
Thus, the correct answer is \( \boxed{\frac{7}{15} \log |\cos 3x + 2\sin 3x| - \frac{4}{5} x + c} \).