Step 1: Condition for real and equal roots.
For a quadratic equation \( ax^2 + bx + c = 0 \), real and equal roots occur when the discriminant is zero:
\[ \Delta = b^2 - 4ac = 0 \]
Substituting \( a = 3 \), \( b = 2k + 1 \), and \( c = -5k \):
\[ (2k + 1)^2 - 4(3)(-5k) = 0 \]
Step 2: Solving for \( k \).
Expanding and simplifying:
\[ 4k^2 + 4k + 1 + 60k = 0 \]
\[ 4k^2 + 64k + 1 = 0 \]
Solving for \( k \) using the quadratic formula:
\[ k = \frac{-64 \pm \sqrt{4096 - 4}}{8} = \frac{-64 \pm \sqrt{255}}{8} \]
\[ k = \frac{-16 \pm \sqrt{255}}{2} \]
Since \( -\frac{1}{2}<k<0 \), we choose \( \frac{-16 + \sqrt{255}}{2} \).