If \( m, l, r, s, n \) are integers such that \( 9 >m >l >s >n >r >2 \) and
\[
\int_{0}^{\frac{\pi}{2}} \sin^n x \cos^r x \, dx = 4 \int_{0}^{\frac{\pi}{2}} \sin^m x \cos^r x \, dx,
\]
\[
\int_{0}^{\frac{\pi}{2}} \sin^l x \cos^r x \, dx = 4 \int_{0}^{\frac{\pi}{2}} \sin^s x \cos^r x \, dx,
\]
\[
\int_{0}^{\frac{\pi}{2}} \sin^n x \cos^r x \, dx = 0,
\]
then the equation involving \( s, l, m, r \) is: