We are given two lines: The first line passes through the points \( A(\mathbf{i} - \mathbf{j} + \mathbf{k}) \) and \( B(2\mathbf{i} + \mathbf{j} - 6\mathbf{k}) \).
The second line passes through the points \( C(3\mathbf{i} - \mathbf{j} - 7\mathbf{k}) \) and \( D(\mathbf{i} - \mathbf{j} + \mathbf{k}) \). Our objective is to determine the point where these two lines intersect.
Step 1: Derive the parametric equations of both lines. For the line passing through \( A \) and \( B \), the parametric form is: \[ \mathbf{r}_1 = (1 - t) \mathbf{A} + t \mathbf{B} = (1 - t)(\mathbf{i} - \mathbf{j} + \mathbf{k}) + t(2\mathbf{i} + \mathbf{j} - 6\mathbf{k}). \] Expanding: \[ \mathbf{r}_1 = \mathbf{i} - \mathbf{j} + \mathbf{k} - t \mathbf{i} + t \mathbf{j} - t \mathbf{k} + 2t \mathbf{i} + t \mathbf{j} - 6t \mathbf{k}. \] \[ \mathbf{r}_1 = (1 + t) \mathbf{i} + (2t) \mathbf{j} + (1 - t) \mathbf{k}. \] For the second line passing through \( C \) and \( D \), the parametric equation is: \[ \mathbf{r}_2 = (1 - t) \mathbf{C} + t \mathbf{D} = (1 - t)(3\mathbf{i} - \mathbf{j} - 7\mathbf{k}) + t(\mathbf{i} - \mathbf{j} + \mathbf{k}). \] Expanding: \[ \mathbf{r}_2 = (3 - 3t) \mathbf{i} - (1 - 2t) \mathbf{j} + (-7 + 8t) \mathbf{k}. \]
Step 2: Find the intersection by equating parametric equations. Setting \( \mathbf{r}_1 = \mathbf{r}_2 \), we obtain: \[ (1 + t) \mathbf{i} + (2t) \mathbf{j} + (1 - t) \mathbf{k} = (3 - 3t) \mathbf{i} - (1 - 2t) \mathbf{j} + (-7 + 8t) \mathbf{k}. \] Equating coefficients for \( \mathbf{i}, \mathbf{j}, \mathbf{k} \), we get: 1. \( 1 + t = 3 - 3t \) 2. \( 2t = -1 + 2t \) 3. \( 1 - t = -7 + 8t \)
Step 3: Solve the system of equations. - The equation \( 2t = -1 + 2t \) is always valid, giving no useful information. - Solving \( 1 + t = 3 - 3t \): \[ 1 + t = 3 - 3t \quad \Rightarrow \quad 4t = 2 \quad \Rightarrow \quad t = \frac{1}{2}. \] - Solving \( 1 - t = -7 + 8t \): \[ 1 - t = -7 + 8t \quad \Rightarrow \quad 9t = 8 \quad \Rightarrow \quad t = \frac{8}{9}. \] Since the values of \( t \) do not match, the lines do not intersect at a common point. Thus, we conclude that the lines are skew.
Conclusion: Since the equations lead to inconsistent parameter values, the two lines do not intersect in three-dimensional space. \bigskip
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
| Gas | CO₂ | Ar | HCHO | CH₄ |
|---|---|---|---|---|
| \(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.