We are given two lines: The first line passes through the points \( A(\mathbf{i} - \mathbf{j} + \mathbf{k}) \) and \( B(2\mathbf{i} + \mathbf{j} - 6\mathbf{k}) \).
The second line passes through the points \( C(3\mathbf{i} - \mathbf{j} - 7\mathbf{k}) \) and \( D(\mathbf{i} - \mathbf{j} + \mathbf{k}) \). Our objective is to determine the point where these two lines intersect.
Step 1: Derive the parametric equations of both lines. For the line passing through \( A \) and \( B \), the parametric form is: \[ \mathbf{r}_1 = (1 - t) \mathbf{A} + t \mathbf{B} = (1 - t)(\mathbf{i} - \mathbf{j} + \mathbf{k}) + t(2\mathbf{i} + \mathbf{j} - 6\mathbf{k}). \] Expanding: \[ \mathbf{r}_1 = \mathbf{i} - \mathbf{j} + \mathbf{k} - t \mathbf{i} + t \mathbf{j} - t \mathbf{k} + 2t \mathbf{i} + t \mathbf{j} - 6t \mathbf{k}. \] \[ \mathbf{r}_1 = (1 + t) \mathbf{i} + (2t) \mathbf{j} + (1 - t) \mathbf{k}. \] For the second line passing through \( C \) and \( D \), the parametric equation is: \[ \mathbf{r}_2 = (1 - t) \mathbf{C} + t \mathbf{D} = (1 - t)(3\mathbf{i} - \mathbf{j} - 7\mathbf{k}) + t(\mathbf{i} - \mathbf{j} + \mathbf{k}). \] Expanding: \[ \mathbf{r}_2 = (3 - 3t) \mathbf{i} - (1 - 2t) \mathbf{j} + (-7 + 8t) \mathbf{k}. \]
Step 2: Find the intersection by equating parametric equations. Setting \( \mathbf{r}_1 = \mathbf{r}_2 \), we obtain: \[ (1 + t) \mathbf{i} + (2t) \mathbf{j} + (1 - t) \mathbf{k} = (3 - 3t) \mathbf{i} - (1 - 2t) \mathbf{j} + (-7 + 8t) \mathbf{k}. \] Equating coefficients for \( \mathbf{i}, \mathbf{j}, \mathbf{k} \), we get: 1. \( 1 + t = 3 - 3t \) 2. \( 2t = -1 + 2t \) 3. \( 1 - t = -7 + 8t \)
Step 3: Solve the system of equations. - The equation \( 2t = -1 + 2t \) is always valid, giving no useful information. - Solving \( 1 + t = 3 - 3t \): \[ 1 + t = 3 - 3t \quad \Rightarrow \quad 4t = 2 \quad \Rightarrow \quad t = \frac{1}{2}. \] - Solving \( 1 - t = -7 + 8t \): \[ 1 - t = -7 + 8t \quad \Rightarrow \quad 9t = 8 \quad \Rightarrow \quad t = \frac{8}{9}. \] Since the values of \( t \) do not match, the lines do not intersect at a common point. Thus, we conclude that the lines are skew.
Conclusion: Since the equations lead to inconsistent parameter values, the two lines do not intersect in three-dimensional space. \bigskip
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).