27
Step 1: Find the direction vector of line AB.
- The direction vector \(\vec{AB}\) is found by subtracting the coordinates of point \(A(1, -2, 1)\) from point \(B(2, -1, 2)\): \[ \vec{AB} = B - A = (2 - 1, -1 - (-2), 2 - 1) = (1, 1, 1) \]
Step 2: Find the vector \(\vec{AC}\).
- The vector \(\vec{AC}\) is found by subtracting the coordinates of point \(A(1, -2, 1)\) from point \(C(1, 2, 3)\): \[ \vec{AC} = C - A = (1 - 1, 2 - (-2), 3 - 1) = (0, 4, 2) \]
Step 3: Find the projection of \(\vec{AC}\) onto \(\vec{AB}\).
- The formula for the projection of vector \(\vec{AC}\) onto vector \(\vec{AB}\) is: \[ \text{proj}_{\vec{AB}} \vec{AC} = \frac{\vec{AC} \cdot \vec{AB}}{\vec{AB} \cdot \vec{AB}} \vec{AB} \] First, calculate the dot product \(\vec{AC} \cdot \vec{AB}\): \[ \vec{AC} \cdot \vec{AB} = (0)(1) + (4)(1) + (2)(1) = 0 + 4 + 2 = 6 \] Next, calculate \(\vec{AB} \cdot \vec{AB}\): \[ \vec{AB} \cdot \vec{AB} = (1)(1) + (1)(1) + (1)(1) = 1 + 1 + 1 = 3 \] Now, apply the projection formula: \[ \text{proj}_{\vec{AB}} \vec{AC} = \frac{6}{3} \vec{AB} = 2 \cdot (1, 1, 1) = (2, 2, 2) \]
Step 4: Find the coordinates of point D, the foot of the perpendicular.
- The coordinates of \(D(\alpha, \beta, \gamma)\) are found by subtracting the projection vector from point \(C\): \[ \vec{CD} = \vec{AC} - \text{proj}_{\vec{AB}} \vec{AC} = (0, 4, 2) - (2, 2, 2) = (-2, 2, 0) \] Thus, the coordinates of point \(D\) are \((-2, 2, 0)\), so \(\alpha = -2\), \(\beta = 2\), and \(\gamma = 0\).
Step 5: Calculate \(\alpha^2 + \beta^2 + \gamma^2\).
- Finally, calculate: \[ \alpha^2 + \beta^2 + \gamma^2 = (-2)^2 + 2^2 + 0^2 = 4 + 4 + 0 = 8 \] Thus, \(\alpha^2 + \beta^2 + \gamma^2 = 8\).
What is the angle between the hour and minute hands at 4:30?
Match the following: