A particle of charge \(-q\) and mass \(m\) moves in a circle of radius \(r\) around an infinitely long line charge of linear density \(+\lambda\). Then the time period will be given as:
Escape velocity of a body from earth is 11.2 km/s. If the radius of a planet be one-third the radius of earth and mass be one-sixth that of earth, the escape velocity from the planet is:
A beam of unpolarised light of intensity \( I_0 \) is passed through a polaroid A and then through another polaroid B which is oriented so that its principal plane makes an angle of 45° relative to that of A. The intensity of emergent light is:
A block of mass m is placed on a surface having vertical cross section given by \(y=\frac{x^2}{4}\). If coefficient of friction is 0.5, the maximum height above the ground at which block can be placed without slipping is:
An electron revolving in the \( n^{th} \) Bohr orbit has magnetic moment \( \mu \). If \( \mu_n \) is the value of \( \mu \), the value of \( x \) is:
In a nuclear fission reaction of an isotope of mass \( M \), three similar daughter nuclei of the same mass are formed. The speed of a daughter nuclei in terms of mass defect \( \Delta M \) will be:
A block of mass 1 kg is pushed up a surface inclined to horizontal at an angle of 60° by a force of 10 N parallel to the inclined surface as shown in the figure. When the block is pushed up by 10 m along the inclined surface, the work done against frictional force is:
If 50 Vernier divisions are equal to 49 main scale divisions of a travelling microscope and one smallest reading of the main scale is 0.5 mm, the Vernier constant of the travelling microscope is: