Problem:
Find the condition that the roots of the cubic equation
\[
x^3 - b x^2 + c x - d = 0
\]
are in arithmetic progression.
Solution:
Let the three roots be \( \alpha, \beta, \gamma \) in arithmetic progression.
Then,
\[
\beta = \alpha + r, \quad \gamma = \alpha + 2r,
\]
for some common difference \( r \).
Using Viète's formulas:
\[
\alpha + \beta + \gamma = b,
\]
\[
\alpha \beta + \beta \gamma + \gamma \alpha = c,
\]
\[
\alpha \beta \gamma = d.
\]
Substitute the roots:
\[
\alpha + (\alpha + r) + (\alpha + 2r) = 3\alpha + 3r = b \implies \alpha + r = \frac{b}{3}.
\]
Express \( \alpha = \frac{b}{3} - r \).
Sum of products of roots two at a time:
\[
\alpha \beta + \beta \gamma + \gamma \alpha = c.
\]
Calculate each term:
\[
\alpha \beta = \alpha (\alpha + r) = \alpha^2 + \alpha r,
\]
\[
\beta \gamma = (\alpha + r)(\alpha + 2r) = \alpha^2 + 3\alpha r + 2r^2,
\]
\[
\gamma \alpha = (\alpha + 2r) \alpha = \alpha^2 + 2\alpha r.
\]
Sum:
\[
3 \alpha^2 + 6 \alpha r + 2 r^2 = c.
\]
Similarly, product of roots:
\[
\alpha \beta \gamma = \alpha (\alpha + r)(\alpha + 2r) = d.
\]
Expand:
\[
\alpha (\alpha^2 + 3\alpha r + 2 r^2) = \alpha^3 + 3 \alpha^2 r + 2 \alpha r^2 = d.
\]
Using the relation \( \alpha + r = \frac{b}{3} \), substitute \( \alpha = \frac{b}{3} - r \) and simplify the above equations. After algebraic manipulation, the condition for roots in arithmetic progression reduces to:
\[
9 c b = 2 b^3 + 27 d.
\]
Final answer:
\[
\boxed{9 c b = 2 b^3 + 27 d}.
\]