We are given the equation of the circle as:
\[
x^2 + y^2 - 2x + 2y - 1 = 0
\]
and the point \( (-1, 1) \). We are required to find the value of \( p^2 + q^2 \), where \( (p, q) \) is the inverse point of \( (-1, 1) \) with respect to the given circle.
Step 1:
First, we find the center and radius of the given circle. We complete the square for both \( x \) and \( y \) in the equation of the circle.
The given equation is:
\[
x^2 - 2x + y^2 + 2y = 1
\]
Completing the square for \( x \) and \( y \):
\[
(x - 1)^2 + (y + 1)^2 = 3
\]
Thus, the center of the circle is \( (1, -1) \) and the radius is \( \sqrt{3} \).
Step 2:
Now, the formula for the inverse of a point \( (x_1, y_1) \) with respect to a circle with center \( (h, k) \) and radius \( r \) is given by:
\[
(x_1, y_1) \rightarrow \left( \frac{r^2(x_1 - h)}{(x_1 - h)^2 + (y_1 - k)^2} + h, \frac{r^2(y_1 - k)}{(x_1 - h)^2 + (y_1 - k)^2} + k \right)
\]
For the given point \( (-1, 1) \), the center of the circle is \( (1, -1) \), and the radius is \( \sqrt{3} \).
Substituting into the formula:
\[
p = \frac{3(-1 - 1)}{(-1 - 1)^2 + (1 + 1)^2} + 1 = \frac{3(-2)}{4 + 4} + 1 = \frac{-6}{8} + 1 = -\frac{3}{4} + 1 = \frac{1}{4}
\]
\[
q = \frac{3(1 + 1)}{(-1 - 1)^2 + (1 + 1)^2} - 1 = \frac{3(2)}{4 + 4} - 1 = \frac{6}{8} - 1 = \frac{3}{4} - 1 = -\frac{1}{4}
\]
Step 3:
Now, we calculate \( p^2 + q^2 \):
\[
p^2 + q^2 = \left( \frac{1}{4} \right)^2 + \left( -\frac{1}{4} \right)^2 = \frac{1}{16} + \frac{1}{16} = \frac{2}{16} = \frac{1}{8}
\]
Thus, the value of \( p^2 + q^2 \) is \( \frac{1}{8} \).