For all $ x>0 $, let $ y_1(x), y_2(x), y_3(x) $ be the functions satisfying
$$
\frac{dy_1}{dx} - (\sin x)^2 y_1 = 0, \quad y_1(1) = 5,
$$
$$
\frac{dy_2}{dx} - (\cos x)^2 y_2 = 0, \quad y_2(1) = \frac{1}{3},
$$
$$
\frac{dy_3}{dx} - \left(\frac{2 - x^3}{x^3}\right) y_3 = 0, \quad y_3(1) = \frac{3}{5e},
$$
respectively. Then
$$
\lim_{x \to 0^+} \frac{y_1(x)y_2(x)y_3(x) + 2x}{e^{3x} \sin x}
$$
is equal to __________.