We are asked to evaluate the limit:
\( \lim_{x \to 0} \csc{x} \left( \sqrt{2 \cos^2{x} + 3 \cos{x}} - \sqrt{\cos^2{x} + \sin{x} + 4} \right) \)
The expression involves two square roots. To simplify the difference of square roots, we use the identity:
\( \sqrt{A} - \sqrt{B} = \frac{A - B}{\sqrt{A} + \sqrt{B}}. \)
Let \( A = 2 \cos^2{x} + 3 \cos{x} \) and \( B = \cos^2{x} + \sin{x} + 4 \). Thus, we can rewrite the original limit as:
\( \lim_{x \to 0} \csc{x} \left( \frac{A - B}{\sqrt{A} + \sqrt{B}} \right) \)
Now, calculate \( A - B \):
\( A - B = (2 \cos^2{x} + 3 \cos{x}) - (\cos^2{x} + \sin{x} + 4) \)
Simplifying this expression: \[ A - B = 2 \cos^2{x} + 3 \cos{x} - \cos^2{x} - \sin{x} - 4 \] \[ A - B = \cos^2{x} + 3 \cos{x} - \sin{x} - 4 \]
Now, as \( x \to 0 \), we use the small angle approximations:
Substituting these approximations in \( A - B \): \[ A - B \approx 1 + 3(1) - x - 4 = 0 - x. \]
Now, we approximate the denominator \( \sqrt{A} + \sqrt{B} \) at \( x \to 0 \). Using the small angle approximation again: \[ \sqrt{2 \cos^2{x} + 3 \cos{x}} \approx \sqrt{2 + 3} = \sqrt{5}, \] \[ \sqrt{\cos^2{x} + \sin{x} + 4} \approx \sqrt{1 + 0 + 4} = \sqrt{5}. \] Therefore, \( \sqrt{A} + \sqrt{B} \approx 2\sqrt{5} \).
Now, substitute all the approximations into the original expression: \[ \lim_{x \to 0} \csc{x} \left( \frac{0 - x}{2 \sqrt{5}} \right). \] Since \( \csc{x} = \frac{1}{\sin{x}} \approx \frac{1}{x} \) as \( x \to 0 \), we get: \[ \lim_{x \to 0} \frac{1}{x} \times \frac{-x}{2 \sqrt{5}} = -\frac{1}{2\sqrt{5}}. \]
The value of the limit is: \( - \frac{1}{2\sqrt{5}} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).