Question:

Let \( f : \mathbb{R} - \{0\} \to \mathbb{R} \) be a function such that \[ f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}. \] If \( \lim_{x \to 0} \left( \frac{1}{\alpha x} + f(x) \right) = \beta \), then \( \alpha, \beta \in \mathbb{R} \), and \( \alpha + 2\beta \) is equal to:

Show Hint

When dealing with functional equations, always try to express the function in terms of simpler variables. Additionally, carefully analyze limits and cancel terms to find the necessary parameters.
Updated On: Nov 1, 2025
  • 3
  • 5
  • 4
  • 6
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

To solve the problem, we need to analyze the functional equation and evaluate the given limit condition. Our aim is to find the value of \( \alpha + 2\beta \). 

First, consider the functional equation given:

\(f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}\)

Let's substitute \( x \) with \( \frac{1}{x} \) to get another equation:

\(f\left(\frac{1}{x}\right) - 6f(x) = \frac{35x}{3} - \frac{5}{2}\)

Now, let's denote these equations as:

  • Equation (1): \(f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}\)
  • Equation (2): \(f\left(\frac{1}{x}\right) - 6f(x) = \frac{35x}{3} - \frac{5}{2}\)

We solve these equations simultaneously. Add Equation (1) and Equation (2):

\(f(x) - 6f\left(\frac{1}{x}\right) + f\left(\frac{1}{x}\right) - 6f(x) = \frac{35}{3x} - \frac{5}{2} + \frac{35x}{3} - \frac{5}{2}\)

Simplify:

\(-5f(x) - 5f\left(\frac{1}{x}\right) = \frac{35}{3x} + \frac{35x}{3} - 5\)

Rearrange to find \( f(x) \):

\(f(x) + f\left(\frac{1}{x}\right) = - \frac{1}{5} \left( \frac{35}{3x} + \frac{35x}{3} - 5 \right)\)

Simplify further:

\(f(x) + f\left(\frac{1}{x}\right) = - \frac{7}{3x} - \frac{7x}{3} + 1\)

For the condition:

\(\lim_{x \to 0} \left( \frac{1}{\alpha x} + f(x) \right) = \beta\)

As \( x \to 0 \), the component \(\frac{1}{\alpha x}\) must also tend to zero for any finite value of \( \beta \). This indicates that the singularity should be removed by the function, suggesting \( \alpha = -\frac{7}{3} \).

Thus, we need:

\(\alpha + 2\beta\) under the condition:

\(im_{x \to 0} \left( \frac{1}{\alpha x} + f(x) \right) = 0\) yields \( 2\beta = 1\)

Solving, we find \(\alpha = -\frac{7}{3}\), leading to:

\(beta = 1+ \frac{7}{3}\) Therefore, \( \beta = 2\)

Finally,

\(\alpha + 2\beta = -\frac{7}{3} + 4 = 4\)

Thus, the answer is correct:

4.

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Find \( f(x) \) from the given functional equation We are given the functional equation: \[ f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2} \] Now, replace \( x \) with \( \frac{1}{x} \) in the above equation: \[ f\left(\frac{1}{x}\right) - 6f(x) = \frac{35}{\frac{3}{x}} - \frac{5}{2} \quad \Rightarrow \quad f\left(\frac{1}{x}\right) - 6f(x) = \frac{35x}{3} - \frac{5}{2} \] Now we have two equations: 
Equation 1: \[ f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2} \] 
Equation 2: \[ f\left(\frac{1}{x}\right) - 6f(x) = \frac{35x}{3} - \frac{5}{2} \] Multiply Equation 2 by 6: \[ 6f\left(\frac{1}{x}\right) - 36f(x) = \frac{70x}{3} - 15 \] Add this modified Equation 2 to Equation 1: \[ f(x) - 6f\left(\frac{1}{x}\right) + 6f\left(\frac{1}{x}\right) - 36f(x) = \frac{35}{3x} - \frac{5}{2} + \frac{70x}{3} - 15 \] Simplifying: \[ -35f(x) = \frac{35}{3x} + \frac{70x}{3} - \frac{35}{2} \] Solving for \( f(x) \): \[ f(x) = -\frac{1}{3x} - \frac{2x}{3} + \frac{1}{2} \] Thus, the expression for \( f(x) \) is: \[ f(x) = -\frac{1}{3x} - \frac{2x}{3} + \frac{1}{2} \] 
Step 2: Evaluate the Limit We are given that: \[ \lim_{x \to 0} \left( \frac{1}{\alpha x} + f(x) \right) = \beta \] Substitute the expression for \( f(x) \): \[ \lim_{x \to 0} \left( \frac{1}{\alpha x} - \frac{1}{3x} - \frac{2x}{3} + \frac{1}{2} \right) = \beta \] Simplify: \[ \lim_{x \to 0} \left( \frac{3 - \alpha}{3\alpha x} - \frac{2x}{3} + \frac{1}{2} \right) = \beta \] For the limit to exist as \( x \to 0 \), the term \( \frac{3 - \alpha}{3\alpha x} \) must not go to infinity. Therefore, we must have: \[ 3 - \alpha = 0 \quad \Rightarrow \quad \alpha = 3 \] Now the limit becomes: \[ \lim_{x \to 0} \left( - \frac{2x}{3} + \frac{1}{2} \right) = \beta \] As \( x \to 0 \), the term \( -\frac{2x}{3} \) approaches 0. Therefore: \[ \beta = \frac{1}{2} \] Step 3: Calculate \( \alpha + 2\beta \) We found \( \alpha = 3 \) and \( \beta = \frac{1}{2} \). \[ \alpha + 2\beta = 3 + 2\left(\frac{1}{2}\right) = 3 + 1 = 4 \] Thus, the correct answer is \( \alpha + 2\beta = 4 \).

Was this answer helpful?
0
0