Question:

Let \( f : \mathbb{R} - \{0\} \to \mathbb{R} \) be a function such that \[ f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}. \] If \( \lim_{x \to 0} \left( \frac{1}{\alpha x} + f(x) \right) = \beta \), then \( \alpha, \beta \in \mathbb{R} \), and \( \alpha + 2\beta \) is equal to:

Show Hint

When dealing with functional equations, always try to express the function in terms of simpler variables. Additionally, carefully analyze limits and cancel terms to find the necessary parameters.
Updated On: Mar 24, 2025
  • 3
  • 5
  • 4
  • 6
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Find \( f(x) \) from the given functional equation We are given the functional equation: \[ f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2} \] Now, replace \( x \) with \( \frac{1}{x} \) in the above equation: \[ f\left(\frac{1}{x}\right) - 6f(x) = \frac{35}{\frac{3}{x}} - \frac{5}{2} \quad \Rightarrow \quad f\left(\frac{1}{x}\right) - 6f(x) = \frac{35x}{3} - \frac{5}{2} \] Now we have two equations: 
Equation 1: \[ f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2} \] 
Equation 2: \[ f\left(\frac{1}{x}\right) - 6f(x) = \frac{35x}{3} - \frac{5}{2} \] Multiply Equation 2 by 6: \[ 6f\left(\frac{1}{x}\right) - 36f(x) = \frac{70x}{3} - 15 \] Add this modified Equation 2 to Equation 1: \[ f(x) - 6f\left(\frac{1}{x}\right) + 6f\left(\frac{1}{x}\right) - 36f(x) = \frac{35}{3x} - \frac{5}{2} + \frac{70x}{3} - 15 \] Simplifying: \[ -35f(x) = \frac{35}{3x} + \frac{70x}{3} - \frac{35}{2} \] Solving for \( f(x) \): \[ f(x) = -\frac{1}{3x} - \frac{2x}{3} + \frac{1}{2} \] Thus, the expression for \( f(x) \) is: \[ f(x) = -\frac{1}{3x} - \frac{2x}{3} + \frac{1}{2} \] 
Step 2: Evaluate the Limit We are given that: \[ \lim_{x \to 0} \left( \frac{1}{\alpha x} + f(x) \right) = \beta \] Substitute the expression for \( f(x) \): \[ \lim_{x \to 0} \left( \frac{1}{\alpha x} - \frac{1}{3x} - \frac{2x}{3} + \frac{1}{2} \right) = \beta \] Simplify: \[ \lim_{x \to 0} \left( \frac{3 - \alpha}{3\alpha x} - \frac{2x}{3} + \frac{1}{2} \right) = \beta \] For the limit to exist as \( x \to 0 \), the term \( \frac{3 - \alpha}{3\alpha x} \) must not go to infinity. Therefore, we must have: \[ 3 - \alpha = 0 \quad \Rightarrow \quad \alpha = 3 \] Now the limit becomes: \[ \lim_{x \to 0} \left( - \frac{2x}{3} + \frac{1}{2} \right) = \beta \] As \( x \to 0 \), the term \( -\frac{2x}{3} \) approaches 0. Therefore: \[ \beta = \frac{1}{2} \] Step 3: Calculate \( \alpha + 2\beta \) We found \( \alpha = 3 \) and \( \beta = \frac{1}{2} \). \[ \alpha + 2\beta = 3 + 2\left(\frac{1}{2}\right) = 3 + 1 = 4 \] Thus, the correct answer is \( \alpha + 2\beta = 4 \).

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions