Step 1: Define the reflexive and transitive conditions. A relation is reflexive if it contains \( (x,x) \) for all \( x \in A \), meaning it must have \( (1,1), (2,2), (3,3) \). Since \( (1,2) \) and \( (2,3) \) are included, transitivity requires \( (1,3) \) to be included.
Step 2: Count valid relations. The possible additional elements are \( (2,1) \) and \( (3,2) \), which must be avoided to prevent symmetry.
The valid relations satisfying reflexivity and transitivity but not symmetry are counted, giving: \[ 7. \] Thus, the answer is \( \boxed{7} \).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 