Step 1: Define the reflexive and transitive conditions. A relation is reflexive if it contains \( (x,x) \) for all \( x \in A \), meaning it must have \( (1,1), (2,2), (3,3) \). Since \( (1,2) \) and \( (2,3) \) are included, transitivity requires \( (1,3) \) to be included.
Step 2: Count valid relations. The possible additional elements are \( (2,1) \) and \( (3,2) \), which must be avoided to prevent symmetry.
The valid relations satisfying reflexivity and transitivity but not symmetry are counted, giving: \[ 7. \] Thus, the answer is \( \boxed{7} \).
Let \( S = \{p_1, p_2, \dots, p_{10}\} \) be the set of the first ten prime numbers. Let \( A = S \cup P \), where \( P \) is the set of all possible products of distinct elements of \( S \). Then the number of all ordered pairs \( (x, y) \), where \( x \in S \), \( y \in A \), and \( x \) divides \( y \), is _________.
Let \( A = \{1,2,3\} \). The number of relations on \( A \), containing \( (1,2) \) and \( (2,3) \), which are reflexive and transitive but not symmetric, is ______.
Let \( A = (1, 2, 3, \dots, 20) \). Let \( R \subseteq A \times A \) such that \( R = \{(x, y) : y = 2x - 7 \} \). Then the number of elements in \( R \) is equal to:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 