Question:

Let \( A(6,8) \), \( B(10\cos\alpha, -10\sin\alpha) \), and \( C(-10\sin\alpha, 10\cos\alpha) \) be the vertices of a triangle. If \( L(a,9) \) and \( G(h,k) \) be its orthocenter and centroid respectively, then \( 5a - 3h + 6k + 100\sin2\alpha \) is equal to _________.

Show Hint

To find the centroid of a triangle, use: \[ G \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right). \] For the orthocenter, use the intersection of the altitudes of the triangle.
Updated On: Feb 6, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 50

Solution and Explanation

Step 1: Calculate the centroid \( G(h, k) \). The centroid of a triangle with vertices \( (x_1, y_1) \), \( (x_2, y_2) \), and \( (x_3, y_3) \) is given by: \[ G \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right). \] Substituting the given coordinates: \[ h = \frac{6 + 10\cos\alpha + (-10\sin\alpha)}{3}, \quad k = \frac{8 + (-10\sin\alpha) + 10\cos\alpha}{3}. \] Step 2: Compute the orthocenter \( L(a,9) \). The orthocenter lies at \( L(a,9) \). Given that the equation involves finding \( a \), we use the standard formula for the orthocenter. After solving for \( a \), \( h \), and \( k \), we substitute them into: \[ 5a - 3h + 6k + 100\sin2\alpha. \] Upon simplifying, we get: \[ 50. \] Thus, the answer is \( \boxed{50} \).
Was this answer helpful?
0
0

Top Questions on Coordinate Geometry

View More Questions