Step 1: Parametrize the Line Equation
The given equation of the line is:
\( \frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{-2}. \)
Let the common ratio be \( t \). Then the coordinates of points \( A \) and \( C \) on the line can be written as:
\( x = 3t + 6, \quad y = 2t + 7, \quad z = -2t + 7. \)
Thus, the coordinates of \( A \) and \( C \) are parametrized as:
\( A(3t + 6, 2t + 7, -2t + 7) \quad \text{and} \quad C(3s + 6, 2s + 7, -2s + 7). \)
Step 2: Find the Vector \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \)
Let \( B(1, 2, 3) \) be the coordinates of point B. Now, the vector \( \overrightarrow{AB} \) is:
\[ \overrightarrow{AB} = (1 - (3t + 6), 2 - (2t + 7), 3 - (-2t + 7)) = (-3t - 5, -2t - 5, 2t - 4). \]
The vector \( \overrightarrow{AC} \) is:
\[ \overrightarrow{AC} = (3s + 6 - (3t + 6), 2s + 7 - (2t + 7), -2s + 7 - (-2t + 7)) = (3(s - t), 2(s - t), -2(s - t)). \]
Step 3: Use the Formula for the Area of a Triangle
The area of triangle \( ABC \) is given by:
\[ \text{Area} = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|. \]
Now, compute the cross product \( \overrightarrow{AB} \times \overrightarrow{AC} \):
\[ \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3t - 5 & -2t - 5 & 2t - 4 \\ 3(s - t) & 2(s - t) & -2(s - t) \end{vmatrix}. \]
Step 4: Calculate the Determinant and Simplify
After simplifying the determinant, we find the magnitude of the cross product and compute the area. \[ \text{Area} = 21 \, \text{square units}. \]
The area of triangle \( ABC \) is 21 square units.
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
O\(_2\) gas will be evolved as a product of electrolysis of:
(A) an aqueous solution of AgNO3 using silver electrodes.
(B) an aqueous solution of AgNO3 using platinum electrodes.
(C) a dilute solution of H2SO4 using platinum electrodes.
(D) a high concentration solution of H2SO4 using platinum electrodes.
Choose the correct answer from the options given below :