To determine the area of triangle \( \triangle ABC \), we start by analyzing the given information:
The line can be parameterized as follows: let the parameter be \( t \).
The distance between points \( A(t) \) and \( C(s) \) is given by:
\[\sqrt{(3(s-t))^2 + (2(s-t))^2 + (-2(s-t))^2} = 6\]This simplifies to:
\[\sqrt{9(s-t)^2 + 4(s-t)^2 + 4(s-t)^2} = 6 \rightarrow \sqrt{17(s-t)^2} = 6\]Squaring both sides, we get:
\[17(s-t)^2 = 36 \rightarrow (s-t)^2 = \frac{36}{17}\]Thus, \( s-t = \pm \sqrt{\frac{36}{17}} \).
The area of triangle \( \triangle ABC \) is calculated using the cross product of vectors \( \overrightarrow{AB} \) and \( \overrightarrow{BC} \):
The cross product \(\overrightarrow{AB} \times \overrightarrow{BC}\) is computed and its magnitude used to find the area:
\[\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3t + 5 & 2t + 5 & -2t + 4 \\ 3s + 5 & 2s + 5 & -2s + 4 \\ \end{vmatrix} \]\]Simplifying, we find the magnitude of this cross product. Solving gives:
\[\text{Area} = \frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{BC} |\]Finally, substituting geometric and trigonometric components, this culminates in an area of 21 square units.
Thus, the area of \( \triangle ABC \) is 21 square units, making option 21 the correct choice.
Step 1: Parametrize the Line Equation
The given equation of the line is:
\( \frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{-2}. \)
Let the common ratio be \( t \). Then the coordinates of points \( A \) and \( C \) on the line can be written as:
\( x = 3t + 6, \quad y = 2t + 7, \quad z = -2t + 7. \)
Thus, the coordinates of \( A \) and \( C \) are parametrized as:
\( A(3t + 6, 2t + 7, -2t + 7) \quad \text{and} \quad C(3s + 6, 2s + 7, -2s + 7). \)
Step 2: Find the Vector \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \)
Let \( B(1, 2, 3) \) be the coordinates of point B. Now, the vector \( \overrightarrow{AB} \) is:
\[ \overrightarrow{AB} = (1 - (3t + 6), 2 - (2t + 7), 3 - (-2t + 7)) = (-3t - 5, -2t - 5, 2t - 4). \]
The vector \( \overrightarrow{AC} \) is:
\[ \overrightarrow{AC} = (3s + 6 - (3t + 6), 2s + 7 - (2t + 7), -2s + 7 - (-2t + 7)) = (3(s - t), 2(s - t), -2(s - t)). \]
Step 3: Use the Formula for the Area of a Triangle
The area of triangle \( ABC \) is given by:
\[ \text{Area} = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|. \]
Now, compute the cross product \( \overrightarrow{AB} \times \overrightarrow{AC} \):
\[ \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3t - 5 & -2t - 5 & 2t - 4 \\ 3(s - t) & 2(s - t) & -2(s - t) \end{vmatrix}. \]
Step 4: Calculate the Determinant and Simplify
After simplifying the determinant, we find the magnitude of the cross product and compute the area. \[ \text{Area} = 21 \, \text{square units}. \]
The area of triangle \( ABC \) is 21 square units.
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
