Given the curve:
\[ y = 9t - \frac{11t^3}{3} \] and the area \( A \) of the rectangle inscribed under this curve is: \[ A = t \left( 9t - \frac{11t^3}{3} \right) = 9t^2 - \frac{11t^4}{3}. \]
To find the maximum area, we differentiate the area function with respect to \( t \): \[ \frac{dA}{dt} = 18t - \frac{44t^3}{3}. \]
Set \( \frac{dA}{dt} = 0 \) to find critical points: \[ 18t - \frac{44t^3}{3} = 0. \] Multiply through by 3 to eliminate the fraction: \[ 54t - 44t^3 = 0. \] Factor out \( t \): \[ t(54 - 44t^2) = 0. \] Thus, \( t = 0 \) or \( t = \pm \frac{9}{11} \).
From the graph and further analysis, we determine that the maximum occurs at \( t = \frac{9}{11} \).
Substituting \( t = \frac{9}{11} \) into the area formula: \[ A = \frac{9}{11} \left( 9 - \frac{11 \cdot 9^3}{3 \cdot 11^3} \right). \] Simplifying: \[ A = \frac{9}{11} \left( 9 - \frac{81}{121} \right) \] \[ A = \frac{9}{11} \times \frac{63}{11} = \frac{567}{121}. \]
The largest area is \( \frac{567}{121} \).
Let \( A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{bmatrix} \) and \( P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \theta > 0. \) If \( B = P A P^T \), \( C = P^T B P \), and the sum of the diagonal elements of \( C \) is \( \frac{m}{n} \), where gcd(m, n) = 1, then \( m + n \) is:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: