Step 1: Define the vertices of the rectangle and its area.
Consider a rectangle inscribed in the region \( R = \{(x, y) : x \le y \le 9 - \frac{11}{3}x^2, x \ge 0 \} \).
Let the upper right vertex of the rectangle be \( (x, 9 - \frac{11}{3}x^2) \).
The lower left vertex is then \( (x,x)\), where \(x \ge 0\). The width of the rectangle is \( x \), and the height is \( 9 - \frac{11}{3}x^2 - x \).
Therefore, the area of the rectangle, \( A(x) \), is given by: \[ A(x) = x\left(9 - \frac{11}{3}x^2 - x\right) = 9x - x^2 - \frac{11}{3}x^3. \]
Step 2: Find the critical points by taking the derivative of the area function and setting it to zero.
To maximize the area, we take the derivative of \( A(x) \) with respect to \( x \) and set it equal to zero: \[ A'(x) = 9 - 2x - 11x^2 = 0. \] \[ 11x^2 + 2x - 9 = 0. \]
Step 3: Solve the quadratic equation for \( x \). Using the quadratic formula: \[ x = \frac{-2 \pm \sqrt{2^2 - 4(11)(-9)}}{2(11)} = \frac{-2 \pm \sqrt{4 + 396}}{22} = \frac{-2 \pm \sqrt{400}}{22} = \frac{-2 \pm 20}{22}. \] Since \( x \ge 0 \), we take the positive root: \[ x = \frac{-2 + 20}{22} = \frac{18}{22} = \frac{9}{11}. \] Step 4: Calculate the maximum area by plugging the critical point into the area function. Now we substitute \( x = \frac{9}{11} \) into the area function: \[ A\left(\frac{9}{11}\right) = 9\left(\frac{9}{11}\right) - \left(\frac{9}{11}\right)^2 - \frac{11}{3}\left(\frac{9}{11}\right)^3 = \frac{81}{11} - \frac{81}{121} - \frac{11}{3} \cdot \frac{729}{1331} = \frac{81}{11} - \frac{81}{121} - \frac{3}{1} \cdot \frac{243}{121 \cdot 11}=\frac{81}{11} - \frac{81}{121} - \frac{243}{121}. \] \[ A\left(\frac{9}{11}\right) = \frac{81}{11} - \frac{324}{121} = \frac{81 \cdot 11 - 324}{121} = \frac{891 - 324}{121} = \frac{567}{121}. \] Final Answer: The area of the largest rectangle is \( \frac{567}{121} \). The correct answer is (3).
Let \( A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{bmatrix} \) and \( P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \theta > 0. \) If \( B = P A P^T \), \( C = P^T B P \), and the sum of the diagonal elements of \( C \) is \( \frac{m}{n} \), where gcd(m, n) = 1, then \( m + n \) is: