Question:

The product of all the rational roots of the equation \[ (x^2 - 9x + 11)^2 - (x - 4)(x - 5) = 3, \] is equal to:

Show Hint

When solving higher degree polynomial equations, use the Rational Root Theorem to list all possible rational roots. Test each possible root by substituting it into the equation and using synthetic division if necessary.
Updated On: Mar 17, 2025
  • 14
  • 7
  • 28
  • 21
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Expand and simplify the equation. We are given the equation \( (x^2 - 9x + 11)^2 - (x-4)(x-5) = 3 \). 
First, let's expand the terms: \[ (x^2 - 9x + 11)^2 - (x^2 - 9x + 20) = 3. \] \[ (x^2 - 9x + 11)^2 - (x^2 - 9x + 20) - 3 = 0. \] 
Step 2: Use a substitution to simplify the equation. Let \( y = x^2 - 9x + 11 \). Then \( x^2 - 9x = y - 11 \). 
The equation becomes: \[ y^2 - (y - 11 + 20) - 3 = 0. \] \[ y^2 - (y + 9) - 3 = 0. \] \[ y^2 - y - 12 = 0. \] 
Step 3: Solve the quadratic equation for \( y \). Factoring the quadratic gives \[ (y-4)(y+3) = 0. \] So \( y = 4 \) or \( y = -3 \). 
Step 4: Substitute back to find the values of \( x \).
Case 1: \( y = 4 \). Then \( x^2 - 9x + 11 = 4 \implies x^2 - 9x + 7 = 0 \). 
The roots are \( x = \frac{9 \pm \sqrt{81 - 28}}{2} = \frac{9 \pm \sqrt{53}}{2} \), which are irrational.
Case 2: \( y = -3 \). Then \( x^2 - 9x + 11 = -3 \implies x^2 - 9x + 14 = 0 \). 
The roots are \( x = \frac{9 \pm \sqrt{81 - 56}}{2} = \frac{9 \pm \sqrt{25}}{2} = \frac{9 \pm 5}{2} \). 
So \( x = \frac{14}{2} = 7 \) or \( x = \frac{4}{2} = 2 \).
Step 5: Find the product of the rational roots. The rational roots are 7 and 2. Their product is \( 7 \times 2 = 14 \). 
Final Answer: The product of all the rational roots is 14.

Was this answer helpful?
0
0

Top Questions on Matrices and Determinants

View More Questions

Questions Asked in JEE Main exam

View More Questions