Step 1: Expand and simplify the equation. We are given the equation \( (x^2 - 9x + 11)^2 - (x-4)(x-5) = 3 \).
First, let's expand the terms: \[ (x^2 - 9x + 11)^2 - (x^2 - 9x + 20) = 3. \] \[ (x^2 - 9x + 11)^2 - (x^2 - 9x + 20) - 3 = 0. \]
Step 2: Use a substitution to simplify the equation. Let \( y = x^2 - 9x + 11 \). Then \( x^2 - 9x = y - 11 \).
The equation becomes: \[ y^2 - (y - 11 + 20) - 3 = 0. \] \[ y^2 - (y + 9) - 3 = 0. \] \[ y^2 - y - 12 = 0. \]
Step 3: Solve the quadratic equation for \( y \). Factoring the quadratic gives \[ (y-4)(y+3) = 0. \] So \( y = 4 \) or \( y = -3 \).
Step 4: Substitute back to find the values of \( x \).
Case 1: \( y = 4 \). Then \( x^2 - 9x + 11 = 4 \implies x^2 - 9x + 7 = 0 \).
The roots are \( x = \frac{9 \pm \sqrt{81 - 28}}{2} = \frac{9 \pm \sqrt{53}}{2} \), which are irrational.
Case 2: \( y = -3 \). Then \( x^2 - 9x + 11 = -3 \implies x^2 - 9x + 14 = 0 \).
The roots are \( x = \frac{9 \pm \sqrt{81 - 56}}{2} = \frac{9 \pm \sqrt{25}}{2} = \frac{9 \pm 5}{2} \).
So \( x = \frac{14}{2} = 7 \) or \( x = \frac{4}{2} = 2 \).
Step 5: Find the product of the rational roots. The rational roots are 7 and 2. Their product is \( 7 \times 2 = 14 \).
Final Answer: The product of all the rational roots is 14.
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to: