Step 1: Expand and simplify the equation. We are given the equation \( (x^2 - 9x + 11)^2 - (x-4)(x-5) = 3 \).
First, let's expand the terms: \[ (x^2 - 9x + 11)^2 - (x^2 - 9x + 20) = 3. \] \[ (x^2 - 9x + 11)^2 - (x^2 - 9x + 20) - 3 = 0. \]
Step 2: Use a substitution to simplify the equation. Let \( y = x^2 - 9x + 11 \). Then \( x^2 - 9x = y - 11 \).
The equation becomes: \[ y^2 - (y - 11 + 20) - 3 = 0. \] \[ y^2 - (y + 9) - 3 = 0. \] \[ y^2 - y - 12 = 0. \]
Step 3: Solve the quadratic equation for \( y \). Factoring the quadratic gives \[ (y-4)(y+3) = 0. \] So \( y = 4 \) or \( y = -3 \).
Step 4: Substitute back to find the values of \( x \).
Case 1: \( y = 4 \). Then \( x^2 - 9x + 11 = 4 \implies x^2 - 9x + 7 = 0 \).
The roots are \( x = \frac{9 \pm \sqrt{81 - 28}}{2} = \frac{9 \pm \sqrt{53}}{2} \), which are irrational.
Case 2: \( y = -3 \). Then \( x^2 - 9x + 11 = -3 \implies x^2 - 9x + 14 = 0 \).
The roots are \( x = \frac{9 \pm \sqrt{81 - 56}}{2} = \frac{9 \pm \sqrt{25}}{2} = \frac{9 \pm 5}{2} \).
So \( x = \frac{14}{2} = 7 \) or \( x = \frac{4}{2} = 2 \).
Step 5: Find the product of the rational roots. The rational roots are 7 and 2. Their product is \( 7 \times 2 = 14 \).
Final Answer: The product of all the rational roots is 14.
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}