Given the following equations:
\( (a + e\sqrt{3})(a - e\sqrt{3}) = \frac{7}{4} ……{i} \)
\( \frac{3}{a^2} + \frac{1}{4b^2} = 1 …….{ii} \)
\( b^2 = a^2(1 - e^2) ……….{iii} \)
From equation (i):
\( (a + e\sqrt{3})(a - e\sqrt{3}) = a^2 - e^2 \cdot 3 = \frac{7}{4} \) \[ a^2 - 3e^2 = \frac{7}{4}. \]
From equation (ii), we have:
\[ \frac{3}{a^2} + \frac{1}{4b^2} = 1 \] Simplifying gives a relationship between \( a \) and \( b \). Using equation (iii), we substitute \( b^2 = a^2(1 - e^2) \) to solve for \( e \).
Substituting into the equation gives us: \[ 12e^4 - 17e^2 + 6 = 0. \] Factoring this quadratic equation: \[ (3e^2 - 2)(4e^2 - 3) = 0 \] This yields: \[ e = \sqrt{\frac{2}{3}} \quad \text{or} \quad e = \sqrt{\frac{3}{4}}. \]
The difference is: \[ \frac{\sqrt{3}}{2} - \sqrt{\frac{2}{3}} = \frac{3 - 2\sqrt{2}}{2\sqrt{3}}. \]
The correct option is (3). The final difference is \( \frac{3 - 2\sqrt{2}}{2\sqrt{3}} \).
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is: