Step 1: Let us solve \( 3x - 4y = \alpha \) and \( 8x - 11y = 33 \).
Multiply the first equation by 8 and the second by 3. \[ 24x - 32y = 8\alpha \quad \text{and} \quad 24x - 33y = 99 \] Subtracting, \[ y = 8\alpha - 99 \] Then \[ 3x = 4(8\alpha - 99) + \alpha = 33\alpha - 396 \] or \[ x = 11\alpha - 132 \] So the intersection is \( (11\alpha - 132, 8\alpha - 99) \).
Step 2: Use the concurrency condition. For the three lines to be concurrent, the determinant formed by their coefficients must be zero: \[ \begin{vmatrix} 3 & -4 & -\alpha \\ 8 & -11 & -33 \\ 2 & -3 & \lambda \end{vmatrix} = 0 \] Expanding the determinant: \[ 3(-11\lambda - 99) - (-4)(8\lambda + 66) - \alpha(-24 + 22) = 0 \] \[ -33\lambda - 297 + 32\lambda + 264 + 2\alpha = 0 \] \[ \lambda - 33 + 2\alpha = 0 \] So \( \lambda = 33 - 2\alpha \).
Step 3: Use the reflection property. The image of the point \( (1, 2) \) in the line \( 2x - 3y + \lambda = 0 \) is given as \[ \left( \frac{57}{13}, \frac{-40}{13} \right) \] The midpoint of the point and its image is \[ \left( \frac{1 + 57/13}{2}, \frac{2 - 40/13}{2} \right) = \left( \frac{70/13}{2}, \frac{-14/13}{2} \right) = \left( \frac{35}{13}, \frac{-7}{13} \right) \] This midpoint lies on the line \( 2x - 3y + \lambda = 0 \), so \[ 2\left( \frac{35}{13} \right) - 3\left( \frac{-7}{13} \right) + \lambda = 0 \] \[ \frac{70}{13} + \frac{21}{13} + \lambda = 0 \] \[ \lambda = -\frac{91}{13} = -7 \] Then the slope of the line joining the point and its image is \[ \frac{2 - (-40/13)}{1 - 57/13} = \frac{26 + 40}{-44} = \frac{66}{-44} = -\frac{3}{2} \] The slope of the line \( 2x - 3y + \lambda = 0 \) is \( \frac{2}{3} \). Since \[ -\frac{3}{2} \cdot \frac{2}{3} = -1 \] the two lines are perpendicular.
Step 4: Solve for \(\alpha\) and calculate the desired value. We have \( \lambda = 33 - 2\alpha \) and \( \lambda = -7 \), so \[ -7 = 33 - 2\alpha \implies 2\alpha = 40 \implies \alpha = 20 \] Then \[ |\alpha \lambda| = |20 \cdot (-7)| = |-140| = 140 \] Using concurrency as \( (11\alpha-132, 8\alpha -99) \) on \( 2x - 3y + \lambda = 0 \), then \[ 2(11\alpha-132) - 3(8\alpha-99) + \lambda = 0 \] \[ 22\alpha - 264 - 24\alpha + 297 + \lambda = 0 \] \[ -2\alpha + 33 + \lambda = 0 \] So \( \lambda = 2\alpha - 33 \). Since the midpoint between \( (1, 2) \) and \( \left(\frac{57}{13}, \frac{-40}{13} \right) \) lies on \( 2x - 3y + \lambda = 0 \), \[ 2\left( \frac{35}{13} \right) - 3\left( \frac{-7}{13} \right) + \lambda = 0 \] \[ \frac{70}{13} + \frac{21}{13} + \lambda = 0 \] So \( \lambda = -\frac{91}{13} = -7 \). \[ -7 = 2\alpha - 33 \implies 2\alpha = 26 \implies \alpha = 13 \] Then \[ |\alpha\lambda| = |13 \cdot (-7)| = 91 \] Final Answer: The correct answer is (2) 91.
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to: