Question:

Let \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \, \vec{b} = 3\hat{i} + \hat{j} - \hat{k} \) and \( \vec{c} \) be three vectors such that \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \). If the vector \( \vec{c} \) is perpendicular to \( \vec{b} \) and \( \vec{a} \cdot \vec{c} = 5 \), then \( |\vec{c}| \) is equal to:

Show Hint

For problems involving vectors, always use the dot product to find relationships between the vectors and their magnitudes. Also, make use of the vector equation \( \vec{c} = \lambda \vec{a} + \mu \vec{b} \) for coplanar vectors.
Updated On: Apr 30, 2025
  • \( \frac{1}{\sqrt{3}} \)
  • 18
  • 16
  • \( \sqrt{\frac{11}{6}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given: \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \), \( \vec{b} = 3\hat{i} + \hat{j} - \hat{k} \), and \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \). We know \( \vec{c} \perp \vec{b} \) and \( \vec{a} \cdot \vec{c} = 5 \).

Since \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \), we can write \( \vec{c} \) as a linear combination of \( \vec{a} \) and \( \vec{b} \):

\[\vec{c} = m\vec{a} + n\vec{b}\]

Substitute \( \vec{c} = m(\hat{i} + 2\hat{j} + 3\hat{k}) + n(3\hat{i} + \hat{j} - \hat{k})\):

\[ \vec{c} = (m + 3n)\hat{i} + (2m + n)\hat{j} + (3m - n)\hat{k} \]

Since \( \vec{c} \perp \vec{b} \), \(\vec{c} \cdot \vec{b} = 0\):

\[(m + 3n)(3) + (2m + n)(1) + (3m - n)(-1) = 0\]

Expand and simplify:

\[3m + 9n + 2m + n - 3m + n = 0\]

\[2m + 11n = 0\]

Therefore:

\[m = -\frac{11}{2}n\] (Equation 1)

Using \( \vec{a} \cdot \vec{c} = 5 \):

\[(\hat{i} + 2\hat{j} + 3\hat{k}) \cdot ((m + 3n)\hat{i} + (2m + n)\hat{j} + (3m - n)\hat{k}) = 5\]

\[m + 3n + 4m + 2n + 9m - 3n = 5\]

\[14m + 2n = 5\]

Substitute \( m = -\frac{11}{2}n \):

\[14(-\frac{11}{2}n) + 2n = 5\]

\[-77n + 2n = 5\]

\[-75n = 5\]

\[n = -\frac{1}{15}\]

From Equation 1, \( m = -\frac{11}{2}(-\frac{1}{15}) = \frac{11}{30} \).

Now substitute \( m \) and \( n \) back into the expression for \(\vec{c}\):

\[ \vec{c} = \left(\frac{11}{30} - \frac{1}{5}\right)\hat{i} + \left(\frac{11}{15} - \frac{1}{15}\right)\hat{j} + \left(\frac{33}{30} + \frac{1}{5}\right)\hat{k} \]

Simplify each component:

\[ \vec{c} = \frac{1}{6}\hat{i} + \frac{2}{3}\hat{j} + \frac{11}{15}\hat{k} \]

Magnitude of \(\vec{c}\):

\[ |\vec{c}| = \sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{11}{15}\right)^2} \]

\[ |\vec{c}| = \sqrt{\frac{1}{36} + \frac{4}{9} + \frac{121}{225}} \]

Find common denominator and simplify:

\[ |\vec{c}| = \sqrt{\frac{25}{900} + \frac{400}{900} + \frac{484}{900}} \]

\[ |\vec{c}| = \sqrt{\frac{909}{900}} \]

\[ |\vec{c}| = \sqrt{\frac{11}{6}} \]

Therefore, \( |\vec{c}| = \sqrt{\frac{11}{6}} \).

Was this answer helpful?
1
0

Top Questions on Vectors

View More Questions

Questions Asked in JEE Main exam

View More Questions