Given: \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \), \( \vec{b} = 3\hat{i} + \hat{j} - \hat{k} \), and \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \). We know \( \vec{c} \perp \vec{b} \) and \( \vec{a} \cdot \vec{c} = 5 \).
Since \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \), we can write \( \vec{c} \) as a linear combination of \( \vec{a} \) and \( \vec{b} \):
\[\vec{c} = m\vec{a} + n\vec{b}\]
Substitute \( \vec{c} = m(\hat{i} + 2\hat{j} + 3\hat{k}) + n(3\hat{i} + \hat{j} - \hat{k})\):
\[ \vec{c} = (m + 3n)\hat{i} + (2m + n)\hat{j} + (3m - n)\hat{k} \]
Since \( \vec{c} \perp \vec{b} \), \(\vec{c} \cdot \vec{b} = 0\):
\[(m + 3n)(3) + (2m + n)(1) + (3m - n)(-1) = 0\]
Expand and simplify:
\[3m + 9n + 2m + n - 3m + n = 0\]
\[2m + 11n = 0\]
Therefore:
\[m = -\frac{11}{2}n\] (Equation 1)
Using \( \vec{a} \cdot \vec{c} = 5 \):
\[(\hat{i} + 2\hat{j} + 3\hat{k}) \cdot ((m + 3n)\hat{i} + (2m + n)\hat{j} + (3m - n)\hat{k}) = 5\]
\[m + 3n + 4m + 2n + 9m - 3n = 5\]
\[14m + 2n = 5\]
Substitute \( m = -\frac{11}{2}n \):
\[14(-\frac{11}{2}n) + 2n = 5\]
\[-77n + 2n = 5\]
\[-75n = 5\]
\[n = -\frac{1}{15}\]
From Equation 1, \( m = -\frac{11}{2}(-\frac{1}{15}) = \frac{11}{30} \).
Now substitute \( m \) and \( n \) back into the expression for \(\vec{c}\):
\[ \vec{c} = \left(\frac{11}{30} - \frac{1}{5}\right)\hat{i} + \left(\frac{11}{15} - \frac{1}{15}\right)\hat{j} + \left(\frac{33}{30} + \frac{1}{5}\right)\hat{k} \]
Simplify each component:
\[ \vec{c} = \frac{1}{6}\hat{i} + \frac{2}{3}\hat{j} + \frac{11}{15}\hat{k} \]
Magnitude of \(\vec{c}\):
\[ |\vec{c}| = \sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{11}{15}\right)^2} \]
\[ |\vec{c}| = \sqrt{\frac{1}{36} + \frac{4}{9} + \frac{121}{225}} \]
Find common denominator and simplify:
\[ |\vec{c}| = \sqrt{\frac{25}{900} + \frac{400}{900} + \frac{484}{900}} \]
\[ |\vec{c}| = \sqrt{\frac{909}{900}} \]
\[ |\vec{c}| = \sqrt{\frac{11}{6}} \]
Therefore, \( |\vec{c}| = \sqrt{\frac{11}{6}} \).
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: