To find the magnitude of the vector \( \vec{c} \) which is coplanar with \( \vec{a} \) and \( \vec{b} \), perpendicular to \( \vec{b} \), and satisfies the condition \( \vec{a} \cdot \vec{c} = 5 \), we need to work through the problem step-by-step.
Given: \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \), \( \vec{b} = 3\hat{i} + \hat{j} - \hat{k} \), and \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \). We know \( \vec{c} \perp \vec{b} \) and \( \vec{a} \cdot \vec{c} = 5 \).
Since \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \), we can write \( \vec{c} \) as a linear combination of \( \vec{a} \) and \( \vec{b} \):
\[\vec{c} = m\vec{a} + n\vec{b}\]
Substitute \( \vec{c} = m(\hat{i} + 2\hat{j} + 3\hat{k}) + n(3\hat{i} + \hat{j} - \hat{k})\):
\[ \vec{c} = (m + 3n)\hat{i} + (2m + n)\hat{j} + (3m - n)\hat{k} \]
Since \( \vec{c} \perp \vec{b} \), \(\vec{c} \cdot \vec{b} = 0\):
\[(m + 3n)(3) + (2m + n)(1) + (3m - n)(-1) = 0\]
Expand and simplify:
\[3m + 9n + 2m + n - 3m + n = 0\]
\[2m + 11n = 0\]
Therefore:
\[m = -\frac{11}{2}n\] (Equation 1)
Using \( \vec{a} \cdot \vec{c} = 5 \):
\[(\hat{i} + 2\hat{j} + 3\hat{k}) \cdot ((m + 3n)\hat{i} + (2m + n)\hat{j} + (3m - n)\hat{k}) = 5\]
\[m + 3n + 4m + 2n + 9m - 3n = 5\]
\[14m + 2n = 5\]
Substitute \( m = -\frac{11}{2}n \):
\[14(-\frac{11}{2}n) + 2n = 5\]
\[-77n + 2n = 5\]
\[-75n = 5\]
\[n = -\frac{1}{15}\]
From Equation 1, \( m = -\frac{11}{2}(-\frac{1}{15}) = \frac{11}{30} \).
Now substitute \( m \) and \( n \) back into the expression for \(\vec{c}\):
\[ \vec{c} = \left(\frac{11}{30} - \frac{1}{5}\right)\hat{i} + \left(\frac{11}{15} - \frac{1}{15}\right)\hat{j} + \left(\frac{33}{30} + \frac{1}{5}\right)\hat{k} \]
Simplify each component:
\[ \vec{c} = \frac{1}{6}\hat{i} + \frac{2}{3}\hat{j} + \frac{11}{15}\hat{k} \]
Magnitude of \(\vec{c}\):
\[ |\vec{c}| = \sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{11}{15}\right)^2} \]
\[ |\vec{c}| = \sqrt{\frac{1}{36} + \frac{4}{9} + \frac{121}{225}} \]
Find common denominator and simplify:
\[ |\vec{c}| = \sqrt{\frac{25}{900} + \frac{400}{900} + \frac{484}{900}} \]
\[ |\vec{c}| = \sqrt{\frac{909}{900}} \]
\[ |\vec{c}| = \sqrt{\frac{11}{6}} \]
Therefore, \( |\vec{c}| = \sqrt{\frac{11}{6}} \).
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
| \([A]\) (mol/L) | \(t_{1/2}\) (min) |
|---|---|
| 0.100 | 200 |
| 0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.