Given: \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \), \( \vec{b} = 3\hat{i} + \hat{j} - \hat{k} \), and \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \). We know \( \vec{c} \perp \vec{b} \) and \( \vec{a} \cdot \vec{c} = 5 \).
Since \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \), we can write \( \vec{c} \) as a linear combination of \( \vec{a} \) and \( \vec{b} \):
\[\vec{c} = m\vec{a} + n\vec{b}\]
Substitute \( \vec{c} = m(\hat{i} + 2\hat{j} + 3\hat{k}) + n(3\hat{i} + \hat{j} - \hat{k})\):
\[ \vec{c} = (m + 3n)\hat{i} + (2m + n)\hat{j} + (3m - n)\hat{k} \]
Since \( \vec{c} \perp \vec{b} \), \(\vec{c} \cdot \vec{b} = 0\):
\[(m + 3n)(3) + (2m + n)(1) + (3m - n)(-1) = 0\]
Expand and simplify:
\[3m + 9n + 2m + n - 3m + n = 0\]
\[2m + 11n = 0\]
Therefore:
\[m = -\frac{11}{2}n\] (Equation 1)
Using \( \vec{a} \cdot \vec{c} = 5 \):
\[(\hat{i} + 2\hat{j} + 3\hat{k}) \cdot ((m + 3n)\hat{i} + (2m + n)\hat{j} + (3m - n)\hat{k}) = 5\]
\[m + 3n + 4m + 2n + 9m - 3n = 5\]
\[14m + 2n = 5\]
Substitute \( m = -\frac{11}{2}n \):
\[14(-\frac{11}{2}n) + 2n = 5\]
\[-77n + 2n = 5\]
\[-75n = 5\]
\[n = -\frac{1}{15}\]
From Equation 1, \( m = -\frac{11}{2}(-\frac{1}{15}) = \frac{11}{30} \).
Now substitute \( m \) and \( n \) back into the expression for \(\vec{c}\):
\[ \vec{c} = \left(\frac{11}{30} - \frac{1}{5}\right)\hat{i} + \left(\frac{11}{15} - \frac{1}{15}\right)\hat{j} + \left(\frac{33}{30} + \frac{1}{5}\right)\hat{k} \]
Simplify each component:
\[ \vec{c} = \frac{1}{6}\hat{i} + \frac{2}{3}\hat{j} + \frac{11}{15}\hat{k} \]
Magnitude of \(\vec{c}\):
\[ |\vec{c}| = \sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{11}{15}\right)^2} \]
\[ |\vec{c}| = \sqrt{\frac{1}{36} + \frac{4}{9} + \frac{121}{225}} \]
Find common denominator and simplify:
\[ |\vec{c}| = \sqrt{\frac{25}{900} + \frac{400}{900} + \frac{484}{900}} \]
\[ |\vec{c}| = \sqrt{\frac{909}{900}} \]
\[ |\vec{c}| = \sqrt{\frac{11}{6}} \]
Therefore, \( |\vec{c}| = \sqrt{\frac{11}{6}} \).
Match the LIST-I with LIST-II
LIST-I (Expressions) | LIST-II (Values) | ||
---|---|---|---|
A. | \( i^{49} \) | I. | 1 |
B. | \( i^{38} \) | II. | \(-i\) |
C. | \( i^{103} \) | III. | \(i\) |
D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).