Step 1: Rewrite the inequalities. We are given the region defined by \( x^2 + 4x + 2 \le y \le |x+2| \).
Completing the square in the lower bound gives \( (x+2)^2 - 2 \le y \le |x+2| \).
Step 2: Find the points of intersection of the curves.
We need to find where \( (x+2)^2 - 2 = |x+2| \). Let \( u = x+2 \). Then we have \( u^2 - 2 = |u| \).
Case 1: \( u \ge 0 \). Then \( u^2 - 2 = u \implies u^2 - u - 2 = 0 \implies (u-2)(u+1) = 0 \). Since \( u \ge 0 \), we have \( u = 2 \). Thus \( x + 2 = 2 \implies x = 0 \).
Case 2: \( u<0 \). Then \( u^2 - 2 = -u \implies u^2 + u - 2 = 0 \implies (u+2)(u-1) = 0 \). Since \( u<0 \), we have \( u = -2 \). Thus \( x + 2 = -2 \implies x = -4 \).
So the intersection points are \( x = -4 \) and \( x = 0 \).
Step 3: Set up the integral for the area. The area of the region is given by the integral: \[ A = \int_{-4}^{0} \left( |x+2| - (x^2 + 4x + 2) \right) dx = \int_{-4}^{0} \left( |x+2| - x^2 - 4x - 2 \right) dx. \] Step 4: Split the integral based on the absolute value. We split the integral into two parts, based on the sign of \( x+2 \). If \( x+2 \ge 0 \), then \( x \ge -2 \), and if \( x+2<0 \), then \( x<-2 \). \[ A = \int_{-4}^{-2} \left( -(x+2) - x^2 - 4x - 2 \right) dx + \int_{-2}^{0} \left( (x+2) - x^2 - 4x - 2 \right) dx. \] \[ A = \int_{-4}^{-2} \left( -x - 2 - x^2 - 4x - 2 \right) dx + \int_{-2}^{0} \left( x + 2 - x^2 - 4x - 2 \right) dx. \] \[ A = \int_{-4}^{-2} \left( -x^2 - 5x - 4 \right) dx + \int_{-2}^{0} \left( -x^2 - 3x \right) dx. \] Step 5: Evaluate the integrals. \[ \int_{-4}^{-2} \left( -x^2 - 5x - 4 \right) dx = \left[ -\frac{x^3}{3} - \frac{5x^2}{2} - 4x \right]_{-4}^{-2} \] \[= \left( \frac{8}{3} - \frac{20}{2} + 8 \right) - \left( \frac{64}{3} - \frac{80}{2} + 16 \right) = \frac{8}{3} - 10 + 8 - \frac{64}{3} + 40 - 16 = - \frac{56}{3} + 22 = \frac{-56+66}{3} = \frac{10}{3}. \] \[ \int_{-2}^{0} \left( -x^2 - 3x \right) dx = \left[ -\frac{x^3}{3} - \frac{3x^2}{2} \right]_{-2}^{0} = 0 - \left( \frac{8}{3} - \frac{12}{2} \right) = - \left( \frac{8}{3} - 6 \right) = - \left( \frac{8-18}{3} \right) = - \left( \frac{-10}{3} \right) = \frac{10}{3}. \] Then \( A = \frac{10}{3} + \frac{10}{3} = \frac{20}{3} \).
Final Answer: The area of the region is \( \frac{20}{3} \).