Area of the Region bounded by the curve y=√49-x2 and x-axis is .
Let g(x) = f(x) + f(1 - x) and f''(x) > 0, x ∈ (0,1). If g is decreasing in the interval (0, α) and increasing in the interval (α, 1), then tan-1 (2α) + tan-1 (\(\frac{1}{α}\)) + tan-1\((\frac{α+1}{α})\) is equal to
If (h,k) is the image of the point (3,4) with respect to the line 2x - 3y -5 = 0 and (l,m) is the foot of the perpendicular from (h,k) on the line 3x + 2y + 12 = 0, then lh + mk + 1 = 2x - 3y - 5 = 0.
If A = \(\begin{bmatrix} 0 & 3\\ 0 & 0 \end{bmatrix}\)and f(x) = x+x2+x3+.....+x2023, then f(A)+I =
Let f : (0,1) → R be the function defined as f(x) = √n if x ∈ [\(\frac{1}{n+1},\frac{1}{n}\)] where n ∈ N. Let g : (0,1) → R be a function such that \(\int_{x^2}^{x}\sqrt{\frac{1-t}{t}}dt<g(x)<2\sqrt x\) for all x ∈ (0,1).Then \(\lim_{x\rightarrow0}f(x)g(x)\)
Let \(\alpha\ and\ \beta\) be real numbers such that \(-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}\). If \(\sin (\alpha+\beta)=\frac{1}{3}\ and\ \cos (\alpha-\beta)=\frac{2}{3}\), then the greatest integer less than or equal to\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\) is ____
Let \( 0 < z < y < x \) be three real numbers such that \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \) are in an arithmetic progression and \( x, \sqrt{2}y, z \) are in a geometric progression. If \( xy + yz + zx = \frac{3}{\sqrt{2}} xyz \), then \( 3(x + y + z)^2 \) is equal to ____________.
Let $\alpha \in(0,1)$ and $\beta=\log _e(1-\alpha)$ Let $P_n(x)=x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots+\frac{x^n}{n}, x \in(0,1)$ Then the integral $\int\limits_0^\alpha \frac{t^{50}}{1-t} d t$ is equal to
Let $R$ be a relation on $N \times N$ defined by $(a, b) R (c, d)$ if and only if $a d(b-c)=b c(a-d)$ Then $R$ is