\(1\)
\(2\)
\(3\)
\(4\)
\(0\)
\(\sin \dfrac{3π}{14} \cos \dfrac{3π}{14} = k \cos \dfrac{π}{14}\)
\(⇒2 \sin\dfrac{3π}{14} \cos \dfrac{3π}{14} = 2k \cos \dfrac{π}{14}\)
\(⇒\sin\dfrac{6π}{14} =2k \cos \dfrac{π}{14}\)
\(\therefore( \dfrac{6π}{14} +\dfrac{π}{14} = \dfrac{7π}{14} = \dfrac{π}{2} )\)
\(\sin \dfrac{6π}{14} = \cos\dfrac{ π}{14}\)
1 = 2k
\(\therefore 4k=4×\dfrac{1}{2}\)
\(\therefore k=2\)
So, the correct option is (B) : 2.
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: