\(1\)
\(2\)
\(3\)
\(4\)
\(0\)
\(\sin \dfrac{3π}{14} \cos \dfrac{3π}{14} = k \cos \dfrac{π}{14}\)
\(⇒2 \sin\dfrac{3π}{14} \cos \dfrac{3π}{14} = 2k \cos \dfrac{π}{14}\)
\(⇒\sin\dfrac{6π}{14} =2k \cos \dfrac{π}{14}\)
\(\therefore( \dfrac{6π}{14} +\dfrac{π}{14} = \dfrac{7π}{14} = \dfrac{π}{2} )\)
\(\sin \dfrac{6π}{14} = \cos\dfrac{ π}{14}\)
1 = 2k
\(\therefore 4k=4×\dfrac{1}{2}\)
\(\therefore k=2\)
So, the correct option is (B) : 2.