Correct answer: Option (B): $2n\pi \pm \frac{\pi}{3}$
Given that $a$, $b$, and $c$ are in GP, we know that:
$b^2 = ac$
Also given: $\tan\theta \cdot \sin\theta \cdot \frac{1}{6} = \cos^2\theta$
We use the identity: $\tan\theta = \frac{\sin\theta}{\cos\theta}$
$\Rightarrow \frac{\sin\theta}{\cos\theta} \cdot \sin\theta \cdot \frac{1}{6} = \cos^2\theta$
$\Rightarrow \frac{\sin^2\theta}{6\cos\theta} = \cos^2\theta$
Multiplying both sides by $6\cos\theta$:
$\Rightarrow \sin^2\theta = 6\cos^3\theta$
Now using the identity $\sin^2\theta = 1 - \cos^2\theta$:
$\Rightarrow 1 - \cos^2\theta = 6\cos^3\theta$
Rewriting:
$\Rightarrow 6\cos^3\theta + \cos^2\theta - 1 = 0$
Trying $\cos\theta = \frac{1}{2}$:
$6 \cdot \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 1 = \frac{3}{4} + \frac{1}{4} - 1 = 0$ ✅
So, $\cos\theta = \frac{1}{2}$ is a solution.
General solution: $\theta = 2n\pi \pm \frac{\pi}{3}$
Given that $\sin \theta$, $\cos \theta$, and $\tan \theta$ form a geometric progression (G.P.), we start with:
$\cos^2 \theta = \frac{1}{6} \sin \theta \tan \theta$
$\Rightarrow \cos^2 \theta = \frac{1}{6} \cdot \sin^2 \theta \cdot \frac{1}{\cos \theta}$
$\Rightarrow \cos^3 \theta = \frac{\sin^2 \theta}{6}$
Now use the identity: $\sin^2 \theta = 1 - \cos^2 \theta$
$\Rightarrow 6 \cos^3 \theta = 1 - \cos^2 \theta$
$\Rightarrow 6 \cos^3 \theta + \cos^2 \theta - 1 = 0$
Factor the cubic:
$\Rightarrow (\cos \theta - \frac{1}{2})(6 \cos^2 \theta + 4 \cos \theta + 2) = 0$
$\Rightarrow 2 (\cos \theta - \frac{1}{2})(3 \cos^2 \theta + 2 \cos \theta + 1) = 0$
Solving: $\cos \theta = \frac{1}{2} \Rightarrow \cos \theta = \cos \frac{\pi}{3}$
Hence, general solution: $\theta = 2n\pi \pm \frac{\pi}{3}$
Assume a is any number in the general domain of the corresponding trigonometric function, then we can explain the following limits.
We know that the graphs of the functions y = sin x and y = cos x detain distinct values between -1 and 1 as represented in the above figure. Thus, the function is swinging between the values, so it will be impossible for us to obtain the limit of y = sin x and y = cos x as x tends to ±∞. Hence, the limits of all six trigonometric functions when x tends to ±∞ are tabulated below: