From the quadratic equation:
\( \alpha + \beta = -60^{\frac{1}{4}}, \quad \alpha \beta = a. \)
Using the condition \(\alpha^4 + \beta^4 = -30\):
\( (\alpha^2 + \beta^2)^2 - 2(\alpha \beta)^2 = -30. \)
Substitute \(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta\):
\( ((-60^{\frac{1}{4}})^2 - 2a)^2 - 2a^2 = -30. \)
Simplify and solve for \(a\), leading to:
\( 2a^2 - 4 \cdot 60^{\frac{1}{2}}a + 90 = 0. \)
The product of all possible values of \(a\) is:
\( \boxed{45}. \)
If the roots of the quadratic equation \( ax^2 + bx + c = 0 \) are real and equal, then:
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then:
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers.
Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.
The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)
Read More: Nature of Roots of Quadratic Equation