Let f : (0,1) → R be the function defined as f(x) = √n if x ∈ [\(\frac{1}{n+1},\frac{1}{n}\)] where n ∈ N. Let g : (0,1) → R be a function such that \(\int_{x^2}^{x}\sqrt{\frac{1-t}{t}}dt<g(x)<2\sqrt x\) for all x ∈ (0,1).
Then \(\lim_{x\rightarrow0}f(x)g(x)\)
To solve this problem, we need to analyze the behavior of the product \(f(x)g(x)\) as \(x \to 0\).
Step 1: Analyze \(f(x)\)
For \(f(x) = \sqrt{n}\) if \(x \in \left(\frac{1}{n+1}, \frac{1}{n}\right]\), as \(x \to 0\), \(n\) must increase because the intervals \(\left(\frac{1}{n+1}, \frac{1}{n}\right]\) get smaller and closer to 0. Thus, \(f(x)\) can assume increasingly larger values since \(\sqrt{n}\) tends to increase as \(n\) increases.
Step 2: Analyze \(g(x)\)
We know from the condition \(\int_{x^2}^{x}\sqrt{\frac{1-t}{t}}dt < g(x) < 2\sqrt{x}\) for \(x\in(0,1)\).
Step 3: Estimation of the lower bound of \(g(x)\)
To find the behavior of \(\int_{x^2}^{x}\sqrt{\frac{1-t}{t}}dt\) as \(x \to 0\), we evaluate this integral's tendency.
Change of variables: Let \(t = x\), so \(dt \approx dx\), and consider that \(\frac{1-t}{t}\to 1\) as \(t\to x\). On estimation, this integral behaves like: \(\approx x^2\cdot\sqrt{\frac{1-x^2}{x^2}} \approx x\) for small \(x\).
Step 4: Evaluate \(\lim_{x \to 0} f(x)g(x)\)
As \(x\to0\), we substitute: \(g(x) < 2\sqrt{x}\) leads to the approximation \(f(x)g(x) \approx \sqrt{n}\cdot2\sqrt{x}\). As \(n\) increases such that \(\frac{1}{n}\) reaches \(x\), the term \(\sqrt{n}\approx\frac{1}{\sqrt{x}}\) cancels out the \(\sqrt{x}\), leading to: \(2\cdot\sqrt{n}\cdot\sqrt{x}\approx 2\cdot\sqrt{x}\cdot\frac{1}{\sqrt{x}}=2\).
Ultimately, \(\lim_{x\to0}f(x)g(x)=2\).
We need to solve a one-sided limit to find the answer, otherwise \(\lim\limits_{x→0^-}\) doesn't exist because it is not in the domain.
\(f(x)=\sqrt{(\frac{1}{x})-1}\) where (.) = least integer function
\(\lim\limits_{x→0^+}\int\limits_{x^2}^x\sqrt{\frac{1-t}{t}}dt.\sqrt{(\frac{1}{x})-1}\le \lim\limits_{x→0^+}f(x).g(x)\le\lim\limits_{x→o^+}\sqrt{(\frac{1}{x}-1)}\times2\sqrt{x}\)
So, \(\lim\limits_{x→0^+}\sqrt{(\frac{1}{x})-1}\times2\sqrt{x}=\lim\limits_{x→0^+}2\sqrt{x}\sqrt{[\frac{1}{x}]}\ \ (\frac{1}{x}∉ Z)\)
\(=\lim\limits_{x→0^+}2\sqrt{x\left(\frac{1}{x}-\left\{\frac{1}{x}\right\}\right)}=2\)
\(=\lim\limits_{x→0^+}2\sqrt{x(\frac{1}{2})}=2;(\frac{1}{x}∉Z)\)
\(\lim\limits_{x→0^+}\int\limits_{x^2}^{x}\sqrt{\frac{1-t}{t}}dt.\sqrt{\frac{1}{x}-\left\{\frac{1}{x}\right\}}=\frac{\int\limits_{x^2}^x\sqrt{\frac{1-t}{t}}dt.\sqrt{1-x\left\{\frac{1}{x}\right\}}}{\sqrt{x}}\)
\(\lim\limits_{x→0^+}\frac{\int\limits_{x^2}^x\sqrt{\frac{1-t}{t}dt}}{\sqrt{x}}=\lim\limits_{x→0^+}\frac{\sqrt{\frac{1-x}{x}}-2x\sqrt{\frac{1=x^2}{x^2}}}{\frac{1}{2\sqrt{x}}}\)
\(\lim\limits_{x→0^+}2\sqrt{1-x}-4\sqrt{x}.\sqrt{1-x^2}=2\)
In the same way, \(\frac{1}{4}\in Z\) is equal to 2.
So, the correct option is (C) : is equal to 2.
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C