Question:

Let $\alpha \in(0,1)$ and $\beta=\log _e(1-\alpha)$ Let $P_n(x)=x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots+\frac{x^n}{n}, x \in(0,1)$ Then the integral $\int\limits_0^\alpha \frac{t^{50}}{1-t} d t$ is equal to

Show Hint

When solving integrals involving logarithmic expressions, consider series expansions for functions like \( P_n(x) \) and integrate term-by-term.
Updated On: Mar 21, 2025
  • $P_{50}(\alpha)-\beta$
  • $-\left(\beta+P_{50}(\alpha)\right)$
  • $\beta+P_{50}(a)$
  • $\beta-P_{50}(\alpha)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

The correct answer is (B) : $-\left(\beta+P_{50}(\alpha)\right)$



Was this answer helpful?
10
17
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Start with the given integral: \[ \int_0^\alpha \frac{1}{1 - t} \, dt. \] This can be rewritten as: \[ \int_0^\alpha \frac{1}{1 - t} \, dt = -\int_0^\alpha \frac{d}{1 - t}. \] Step 2: Now, express the series expansion for \( P_n(x) \): \[ P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots + \frac{x^n}{n}. \] Step 3: After integrating the series term-by-term, we get: \[ -\int_0^\alpha \frac{d}{1 - t} = -P_{50}(\alpha) - \beta. \] Step 4: Hence, the value of the integral is: \[ \int_0^\alpha \frac{1}{1 - t} \, dt = -(\beta + P_{50}(\alpha)). \]

Was this answer helpful?
0
0

Concepts Used:

Application of Derivatives

Various Applications of Derivatives-

Rate of Change of Quantities:

If some other quantity ‘y’ causes some change in a quantity of surely ‘x’, in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, ‘y’ is a function of ‘x’ then the rate of change of ‘y’ related to ‘x’ is to be given by 

\(\frac{\triangle y}{\triangle x}=\frac{y_2-y_1}{x_2-x_1}\)

This is also known to be as the Average Rate of Change.

Increasing and Decreasing Function:

Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).

  • If for any two points x1 and x2 in the interval x such a manner that x1 < x2, there holds an inequality f(x1) ≤ f(x2); then the function f(x) is known as increasing in this interval.
  • Likewise, if for any two points x1 and x2 in the interval x such a manner that x1 < x2, there holds an inequality f(x1) ≥ f(x2); then the function f(x) is known as decreasing in this interval.
  • The functions are commonly known as strictly increasing or decreasing functions, given the inequalities are strict: f(x1) < f(x2) for strictly increasing and f(x1) > f(x2) for strictly decreasing.

Read More: Application of Derivatives