Using integration by parts
So, the correct answer is (A): \(-\frac{\pi^2}{4\pi+16}+2ln(\frac{\pi+4}{4\sqrt2})+1\)
We are given $I(x) = \int \frac{x^2 (x \sec^2 x + \tan x)}{(x \tan x + 1)^2} dx$.
We can rewrite the integrand as:
$\frac{x^2 (x \sec^2 x + \tan x)}{(x \tan x + 1)^2} = \frac{x^3 \sec^2 x + x^2 \tan x}{(x \tan x + 1)^2}$
Let $u = x^2$ and $dv = \frac{x \sec^2 x + \tan x}{(x \tan x + 1)^2} dx$. If $v = \frac{-1}{x \tan x + 1}$, then $dv = \frac{x \sec^2 x + \tan x}{(x \tan x + 1)^2} dx$. This can be verified by differentiating $v$ with respect to $x$. Now, using integration by parts:
$\int u dv = uv - \int v du$
$I(x) = x^2 \left( \frac{-1}{x \tan x + 1} \right) - \int \left( \frac{-1}{x \tan x + 1} \right) (2x) dx$
$I(x) = \frac{-x^2}{x \tan x + 1} + \int \frac{2x}{x \tan x + 1} dx$
We know that $\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$. The derivative of $x \tan x + 1 $ is $x \sec^2 x + \tan x$. Therefore,
$\int \frac{2x}{x \tan x + 1} dx = 2 \ln |x \tan x + 1 | + C$
Thus,
$I(x) = \frac{-x^2}{x \tan x + 1} + 2 \ln |x \tan x + 1| + C$
Since I(0) = 0, we have 0 = 0 + 2 ln(1) + C ⇒ C = 0. Therefore,
$I(x) = \frac{-x^2}{x \tan x + 1} + 2 \ln |x \tan x + 1|$
Now, we need to find $I(\frac{\pi}{4})$:
$I(\frac{\pi}{4}) = \frac{-(\frac{\pi}{4})^2}{\frac{\pi}{4} \tan(\frac{\pi}{4}) + 1} + 2 \ln |\frac{\pi}{4} \tan(\frac{\pi}{4}) + 1| = \frac{-\frac{\pi^2}{16}}{\frac{\pi}{4} + 1} + 2 \ln |\frac{\pi}{4} + 1| = \frac{-\pi^2}{4(\pi + 4)} + 2 \ln |\frac{\pi + 4}{4}|$
$I(\frac{\pi}{4}) = \frac{-\pi^2}{4(\pi + 4)} + \ln (\frac{(\pi + 4)^2}{16})$
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
There are distinct applications of integrals, out of which some are as follows:
In Maths
Integrals are used to find:
In Physics
Integrals are used to find: