Given: Points A(0, 4) and B(2t, 0)
1. Midpoint of AB:
Using the midpoint formula:
Midpoint M = $\left( \frac{0 + 2t}{2}, \frac{4 + 0}{2} \right) = (t, 2)$
2. Slope of AB:
$m_1 = \frac{0 - 4}{2t - 0} = \frac{-4}{2t} = \frac{-2}{t}$
Let $m_2$ be the slope of the perpendicular bisector. Then:
$m_1 \cdot m_2 = -1 \Rightarrow \left( \frac{-2}{t} \right) \cdot m_2 = -1$
$\Rightarrow m_2 = \frac{t}{2}$
3. Equation of the perpendicular bisector:
Using point-slope form with point M(t, 2) and slope $m_2 = \frac{t}{2}$:
$y - 2 = \frac{t}{2}(x - t)$
4. Intersection with y-axis (put $x = 0$):
$y - 2 = \frac{t}{2}(0 - t) = \frac{-t^2}{2}$
$y = 2 - \frac{t^2}{2} = \frac{4 - t^2}{2}$
So, point R = $\left( 0, \frac{4 - t^2}{2} \right)$
5. Midpoint of MR (call it point P):
M = $(t, 2)$, R = $\left( 0, \frac{4 - t^2}{2} \right)$
Midpoint P = $\left( \frac{t + 0}{2}, \frac{2 + \frac{4 - t^2}{2}}{2} \right)$
$\Rightarrow P = \left( \frac{t}{2}, \frac{8 - t^2}{4} \right)$
6. Eliminate parameter t:
Let $P = (h, k)$, so $h = \frac{t}{2} \Rightarrow t = 2h$
Substitute in $k = \frac{8 - t^2}{4}$:
$k = \frac{8 - (2h)^2}{4} = \frac{8 - 4h^2}{4} = 2 - h^2$
Final locus equation:
$k = 2 - h^2$
This is the equation of a parabola.
Answer: Option (B) : a parabola
Given:
A = (0, 4)
B = (2t, 0)
L is the midpoint of AB.
The perpendicular bisector of AB meets the y-axis at M.
N is the midpoint of LM.
We want to find the locus of N.
Step 1: Find the coordinates of L.
L is the midpoint of AB, so its coordinates are:
\(L = \left( \frac{0 + 2t}{2}, \frac{4 + 0}{2} \right) = (t, 2)\)
Step 2: Find the equation of the perpendicular bisector of AB.
The slope of AB is:
\(m_{AB} = \frac{0 - 4}{2t - 0} = \frac{-4}{2t} = -\frac{2}{t}\)
The slope of the perpendicular bisector is the negative reciprocal of \(m_{AB}\):
\(m_{\perp} = \frac{t}{2}\)
The perpendicular bisector passes through the midpoint L (t, 2). Using the point-slope form of a line:
\(y - 2 = \frac{t}{2}(x - t)\)
Step 3: Find the coordinates of M.
M is the point where the perpendicular bisector intersects the y-axis, so x = 0. Substitute x = 0 into the equation of the perpendicular bisector:
\(y - 2 = \frac{t}{2}(0 - t)\)
\(y = 2 - \frac{t^2}{2}\)
So, M = \((0, 2 - \frac{t^2}{2})\)
Step 4: Find the coordinates of N.
N is the midpoint of LM. L = (t, 2) and M = \((0, 2 - \frac{t^2}{2})\). Therefore, the coordinates of N are:
\(N = \left( \frac{t + 0}{2}, \frac{2 + 2 - \frac{t^2}{2}}{2} \right) = \left( \frac{t}{2}, \frac{4 - \frac{t^2}{2}}{2} \right) = \left( \frac{t}{2}, 2 - \frac{t^2}{4} \right)\)
Step 5: Find the locus of N.
Let the coordinates of N be (x, y). Then:
\(x = \frac{t}{2} \implies t = 2x\)
\(y = 2 - \frac{t^2}{4}\)
Substitute \(t = 2x\) into the equation for y:
\(y = 2 - \frac{(2x)^2}{4} = 2 - \frac{4x^2}{4} = 2 - x^2\)
\(y = 2 - x^2\)
\(x^2 = 2 - y\)
This is the equation of a parabola.
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: