If A = \(\begin{bmatrix} 0 & 3\\ 0 & 0 \end{bmatrix}\)and f(x) = x+x2+x3+.....+x2023, then f(A)+I =
\(\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 3\\ 0 & 0 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 3\\ 0 & 1 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 3\\ 1 & 1 \end{bmatrix}\)
To solve the problem, we are given a matrix \( A = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix} \) and a polynomial function \( f(x) = x + x^2 + x^3 + \cdots + x^{2023} \). We are to compute \( f(A) + I \), where \( I \) is the identity matrix.
1. Understanding the Polynomial Function:
The given polynomial is a geometric progression:
\( f(x) = x + x^2 + x^3 + \cdots + x^{2023} \)
This can be expressed as:
\( f(x) = \frac{x(x^{2023} - 1)}{x - 1} \) for \( x \ne 1 \), but since we are plugging in a matrix, we will analyze \( f(A) \) directly using matrix powers.
2. Powers of Matrix \( A \):
Given \( A = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix} \), we compute its powers:
\( A^1 = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix} \)
\( A^2 = A \cdot A = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)
So, \( A^n = 0 \) for all \( n \geq 2 \)
3. Evaluate \( f(A) \):
Since \( A^2 = 0 \), we only consider the first term:
\( f(A) = A + A^2 + A^3 + \cdots + A^{2023} = A + 0 + 0 + \cdots + 0 = A \)
4. Add the Identity Matrix:
Now compute \( f(A) + I \):
\( f(A) + I = A + I = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \)
Final Answer:
The matrix \( f(A) + I \) is \( \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \)
If the roots of the quadratic equation \( ax^2 + bx + c = 0 \) are real and equal, then:
Match the following:
A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers.
Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.
The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)
Read More: Nature of Roots of Quadratic Equation