Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle ABC and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is be the sum of areas of all the triangles formed in this process, then:
Let the foci of a hyperbola $ H $ coincide with the foci of the ellipse $ E : \frac{(x - 1)^2}{100} + \frac{(y - 1)^2}{75} = 1 $ and the eccentricity of the hyperbola $ H $ be the reciprocal of the eccentricity of the ellipse $ E $. If the length of the transverse axis of $ H $ is $ \alpha $ and the length of its conjugate axis is $ \beta $, then $ 3\alpha^2 + 2\beta^2 $ is equal to:
\(\lim_{x \to 0} \frac{e - (1 + 2x)^{\frac{1}{2x}}}{x} \quad \text{is equal to:}\)