Solution:
Step 1. Calculate \( a = P(X = 3) \):
\( a = \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} = \frac{25}{216} \)
Step 2. Calculate \( b = P(X \geq 3) \):
\( b = \frac{5}{6} + \frac{5}{6} \cdot \frac{5}{6} + \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} + \dots = \frac{25}{36} \)
Step 3. Calculate \( c = P(X \geq 6 \mid X \geq 3) \):
\( c = \left(\frac{5}{6}\right)^3 \cdot \frac{1}{6} + \dots = \frac{25}{36} \)
Step 4. Compute \( \frac{b + c}{a} \):
\( \frac{b + c}{a} = 12 \)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)