Solution:
Step 1. Calculate \( a = P(X = 3) \):
\( a = \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} = \frac{25}{216} \)
Step 2. Calculate \( b = P(X \geq 3) \):
\( b = \frac{5}{6} + \frac{5}{6} \cdot \frac{5}{6} + \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} + \dots = \frac{25}{36} \)
Step 3. Calculate \( c = P(X \geq 6 \mid X \geq 3) \):
\( c = \left(\frac{5}{6}\right)^3 \cdot \frac{1}{6} + \dots = \frac{25}{36} \)
Step 4. Compute \( \frac{b + c}{a} \):
\( \frac{b + c}{a} = 12 \)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: