To find the domain of \( f(x) \), analyze each component individually.
For \( \cos^{-1} \left( \frac{2 - |x|}{4} \right) \) to be defined, \( -1 \leq \frac{2 - |x|}{4} \leq 1 \). Solving these inequalities:
\[ -1 \leq \frac{2 - |x|}{4} \leq 1 \]
leads to \( |x| \leq 6 \), so \( x \in [-6, 6] \).
For \( (\log_e (3 - x))^{-1} \) to be defined, \( \log_e (3 - x) \neq 0 \) and \( 3 - x > 0 \).
Combining these conditions, we have:
\[ x \in [-6, 3) - \{2\} \]
Thus, the domain is \( [-\alpha, \beta) - \{\gamma\} \) where \( \alpha = 6 \), \( \beta = 3 \), and \( \gamma = 2 \).
\( \alpha + \beta + \gamma = 11 \)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: