Given:
\[ |2a - 1| = 3[a] + 2\{a\} \]
Rewrite \(|2a - 1|\) in two forms depending on the value of \(a\):
In this case:
\[ 2a - 1 = [a] + 2a \]
Since \([a] = -1\), we find that \(a \in [-1, 0)\), which is a contradiction because \(a > \frac{1}{2}\). Therefore, this case is rejected.
Case 2: \(a < \frac{1}{2}\) In this case:
\[ -2a + 1 = [a] + 2a \]
Let \(a = I + f\) where \(I\) is the integer part and \(f\) is the fractional part, so \([a] = 0\) and \(\{a\} = f\).
Then we have:
\[ -2(I + f) + 1 = I + 2f \]
Substituting \(I = 0\), we get:
\[ 1 = 2f \implies f = \frac{1}{4} \]
Thus, \(a = \frac{1}{4}\).
Now, calculating \(72 \sum_{a \in S} a\): \[ 72 \times \frac{1}{4} = 18 \]
If the domain of the function \[ f(x)=\log\left(10x^2-17x+7\right)\left(18x^2-11x+1\right) \] is $(-\infty,a)\cup(b,c)\cup(d,\infty)-\{e\}$, then $90(a+b+c+d+e)$ equals
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.