To find the range of the function \(f(x) = \frac{1}{2 + \sin 3x + \cos 3x}\), where \(x \in \mathbb{R}\), we start by exploring the expression \(2 + \sin 3x + \cos 3x\).
We know:
Thus, the expression \(2 + \sin 3x + \cos 3x\) can be written as:
\(2 + r \sqrt{2} \sin(3x + \phi)\), where \(r = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = \sqrt{2}\)
This simplifies to:
\(2 + \sqrt{2} (\sin 3x + \cos 3x) = 2 + \sqrt{2} \sqrt{1} \sin(3x + \phi)\)
The maximum value of \(\sin(3x + \phi)\) is 1, and the minimum value is -1.
So, the minimum and maximum values of \(2 + \sin 3x + \cos 3x\) are:
Thus, the range of \(f(x)\) is the reciprocal of these maximum and minimum values:
Therefore, the range of \(f(x)\) is \(\left[\frac{1}{2 + \sqrt{2}}, \frac{1}{2 - \sqrt{2}}\right]\).
Now, let's calculate the arithmetic mean (\(\alpha\)) and geometric mean (\(\beta\)) of \(a\) and \(b\).
We now calculate \(\frac{\alpha}{\beta}\):
\(\frac{\alpha}{\beta} = \frac{1}{\sqrt{\frac{1}{2}}} = \sqrt{2}\)
Therefore, \(\frac{\alpha}{\beta} = \sqrt{2}\), which is the correct option.
We are given the function:
\[ f(x) = \frac{1}{2 + \sin 3x + \cos 3x} \]
The function involves a trigonometric expression inside the denominator. First, we analyze the range of the expression \(2 + \sin 3x + \cos 3x\).
We know that:
\[ \sin 3x + \cos 3x = \sqrt{2} \sin \left(3x + \frac{\pi}{4}\right) \]
Thus, the maximum value of \(\sin 3x + \cos 3x\) is \(\sqrt{2}\), and the minimum value is \(-\sqrt{2}\).
Adding 2 to the above expression, we get:
\[ 2 + \sin 3x + \cos 3x = 2 + \sqrt{2} \sin \left(3x + \frac{\pi}{4}\right) \]
The minimum value of \(2 + \sin 3x + \cos 3x\) occurs when \(\sin 3x + \cos 3x = -\sqrt{2}\), giving:
\[ 2 - \sqrt{2} \]
The maximum value occurs when \(\sin 3x + \cos 3x = \sqrt{2}\), giving:
\[ 2 + \sqrt{2} \]
Thus, the range of \(f(x)\) is:
\[ \frac{1}{2 + \sqrt{2}} \text{ to } \frac{1}{2 - \sqrt{2}} \]
Let \( a = 2 + \sqrt{2} \) and \( b = 2 - \sqrt{2} \). The A.M. (Arithmetic Mean) and G.M. (Geometric Mean) of \(a\) and \(b\) are given by:
\[ \alpha = \frac{a + b}{2} \quad \text{and} \quad \beta = \sqrt{a \cdot b} \]
Calculating \(a + b\):
\[ a + b = (2 + \sqrt{2}) + (2 - \sqrt{2}) = 4 \]
Thus,
\[ \alpha = \frac{4}{2} = 2 \]
Now, calculate \(a \cdot b\):
\[ a \cdot b = (2 + \sqrt{2})(2 - \sqrt{2}) = 4 - 2 = 2 \]
Thus,
\[ \beta = \sqrt{2} \]
Finally, we calculate:
\[ \frac{\alpha}{\beta} = \frac{2}{\sqrt{2}} = \sqrt{2} \]
Thus, the value of \(\frac{\alpha}{\beta}\) is \(\sqrt{2}\).
\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]