We are given the function:
\[ f(x) = \frac{1}{2 + \sin 3x + \cos 3x} \]
The function involves a trigonometric expression inside the denominator. First, we analyze the range of the expression \(2 + \sin 3x + \cos 3x\).
We know that:
\[ \sin 3x + \cos 3x = \sqrt{2} \sin \left(3x + \frac{\pi}{4}\right) \]
Thus, the maximum value of \(\sin 3x + \cos 3x\) is \(\sqrt{2}\), and the minimum value is \(-\sqrt{2}\).
Adding 2 to the above expression, we get:
\[ 2 + \sin 3x + \cos 3x = 2 + \sqrt{2} \sin \left(3x + \frac{\pi}{4}\right) \]
The minimum value of \(2 + \sin 3x + \cos 3x\) occurs when \(\sin 3x + \cos 3x = -\sqrt{2}\), giving:
\[ 2 - \sqrt{2} \]
The maximum value occurs when \(\sin 3x + \cos 3x = \sqrt{2}\), giving:
\[ 2 + \sqrt{2} \]
Thus, the range of \(f(x)\) is:
\[ \frac{1}{2 + \sqrt{2}} \text{ to } \frac{1}{2 - \sqrt{2}} \]
Let \( a = 2 + \sqrt{2} \) and \( b = 2 - \sqrt{2} \). The A.M. (Arithmetic Mean) and G.M. (Geometric Mean) of \(a\) and \(b\) are given by:
\[ \alpha = \frac{a + b}{2} \quad \text{and} \quad \beta = \sqrt{a \cdot b} \]
Calculating \(a + b\):
\[ a + b = (2 + \sqrt{2}) + (2 - \sqrt{2}) = 4 \]
Thus,
\[ \alpha = \frac{4}{2} = 2 \]
Now, calculate \(a \cdot b\):
\[ a \cdot b = (2 + \sqrt{2})(2 - \sqrt{2}) = 4 - 2 = 2 \]
Thus,
\[ \beta = \sqrt{2} \]
Finally, we calculate:
\[ \frac{\alpha}{\beta} = \frac{2}{\sqrt{2}} = \sqrt{2} \]
Thus, the value of \(\frac{\alpha}{\beta}\) is \(\sqrt{2}\).