The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is:
Given: Chords \( AB \) and \( CD \) of a circle with center \( P \) intersect at point \( E \).To Prove: \( AE \times EB = CE \times ED \).
In \( \triangle ABC \), ray \( BD \) bisects \( \angle ABC \), \( A - D - C \), and \( \text{seg } DE \parallel \text{side } BC \). If \( A - E - B \), then for showing \( \frac{AB}{BC} = \frac{AE}{EB} \), complete the following activity:
In the figure below, \( m(\text{arc NS}) = 125^\circ \), \( m(\text{arc EF}) = 37^\circ \). Find the measure of \( \angle NMS \).
In the figure given above, \( ABCD \) is a square, and a circle is inscribed in it. All sides of the square touch the circle. If \( AB = 14 \, \text{cm} \), find the area of the shaded region.
Find the value of \( \sin^2 \theta + \cos^2 \theta \):
In the above figure, \( \triangle ABC \) is inscribed in arc \( ABC \). If \( \angle ABC = 60^\circ \), find \( m\angle AOC \):