We are given: \(\tan^{-1}\left(\sqrt{x(x+1)}\right) + \sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \dfrac{\pi}{2}\).
Let \(\theta = \tan^{-1}\left(\sqrt{x(x+1)}\right)\). Then \(\tan\theta = \sqrt{x(x+1)}\), and since \(\theta \in \left(0, \dfrac{\pi}{2}\right)\), we have \(\cos\theta = \dfrac{1}{\sqrt{1 + \tan^2\theta}} = \dfrac{1}{\sqrt{1 + x(x+1)}}\).
We also have \(\sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \dfrac{\pi}{2} - \theta\), so \(\cos(\dfrac{\pi}{2} - \theta) = \sqrt{x^2 + x + 1} \Rightarrow \sin\theta = \sqrt{x^2 + x + 1}\).
Now, using identity: \(\sin^2\theta + \cos^2\theta = 1\), we get:
\[
(x^2 + x + 1) + \dfrac{1}{1 + x(x+1)} = 1
\Rightarrow x^2 + x + 1 + \dfrac{1}{1 + x^2 + x} = 1.
\]
Let \(y = x^2 + x\), then:
\[
y + 1 + \dfrac{1}{y + 1} = 1
\Rightarrow y + 1 + \dfrac{1}{y + 1} = 1.
\]
Let \(z = y + 1\), then:
\[
z + \dfrac{1}{z} = 1 \Rightarrow z^2 - z + 1 = 0.
\]
This gives complex roots, so the correct step is to solve original equation numerically or test for values of \(x\) satisfying the equation. From analysis or plotting, there are two real values of \(x\) that satisfy the equation.