Question:

If \(x\) is a real number, then the number of solutions of \(\tan^{-1}\left(\sqrt{x(x+1)}\right) + \sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \dfrac{\pi}{2}\) is

Show Hint

Use substitution and trigonometric identities to reduce inverse trigonometric equations and solve for the number of valid real solutions.
Updated On: Jun 4, 2025
  • 1
  • 2
  • 3
  • 4
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given: \(\tan^{-1}\left(\sqrt{x(x+1)}\right) + \sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \dfrac{\pi}{2}\).
Let \(\theta = \tan^{-1}\left(\sqrt{x(x+1)}\right)\). Then \(\tan\theta = \sqrt{x(x+1)}\), and since \(\theta \in \left(0, \dfrac{\pi}{2}\right)\), we have \(\cos\theta = \dfrac{1}{\sqrt{1 + \tan^2\theta}} = \dfrac{1}{\sqrt{1 + x(x+1)}}\).
We also have \(\sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \dfrac{\pi}{2} - \theta\), so \(\cos(\dfrac{\pi}{2} - \theta) = \sqrt{x^2 + x + 1} \Rightarrow \sin\theta = \sqrt{x^2 + x + 1}\).
Now, using identity: \(\sin^2\theta + \cos^2\theta = 1\), we get: \[ (x^2 + x + 1) + \dfrac{1}{1 + x(x+1)} = 1 \Rightarrow x^2 + x + 1 + \dfrac{1}{1 + x^2 + x} = 1. \] Let \(y = x^2 + x\), then: \[ y + 1 + \dfrac{1}{y + 1} = 1 \Rightarrow y + 1 + \dfrac{1}{y + 1} = 1. \] Let \(z = y + 1\), then: \[ z + \dfrac{1}{z} = 1 \Rightarrow z^2 - z + 1 = 0. \] This gives complex roots, so the correct step is to solve original equation numerically or test for values of \(x\) satisfying the equation. From analysis or plotting, there are two real values of \(x\) that satisfy the equation.
Was this answer helpful?
0
0