Step 1: Use the angle sum property of a triangle.
In any triangle, the sum of angles is $ 180^\circ $, so:
$$
A + B + C = 180^\circ \quad \Rightarrow \quad B + C = 180^\circ - A.
$$
Thus:
$$
\cos(B+C) = \cos(180^\circ - A) = -\cos A.
$$
Step 2: Use the Law of Cosines to find $ \cos A $.
The Law of Cosines states:
$$
\cos A = \frac{b^2 + c^2 - a^2}{2bc}.
$$
Substitute $ a = 13 $, $ b = 8 $, $ c = 7 $:
$$
\cos A = \frac{8^2 + 7^2 - 13^2}{2 \cdot 8 \cdot 7}.
$$
Simplify:
$$
\cos A = \frac{64 + 49 - 169}{112} = \frac{113 - 169}{112} = \frac{-56}{112} = -\frac{1}{2}.
$$
Step 3: Compute $ \cos(B+C) $.
Since $ \cos(B+C) = -\cos A $:
$$
\cos(B+C) = -\left(-\frac{1}{2}\right) = \frac{1}{2}.
$$
Step 4: Final Answer.
$$
\boxed{\frac{1}{2}}
$$