Step 1: Simplify the given expression for \(y\).
The given function is \(y = \sqrt{\cosh x + \sqrt{\cosh x}}\).
To simplify differentiation, square both sides of the equation to remove the outermost square root:
\[
y^2 = \cosh x + \sqrt{\cosh x}
\]
Step 2: Differentiate implicitly with respect to \(x\).
Differentiate both sides of the equation \(y^2 = \cosh x + \sqrt{\cosh x}\) with respect to \(x\).
For the Left Hand Side (LHS):
\(\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}\) (using the chain rule).
For the Right Hand Side (RHS):
Recall that \(\frac{d}{dx}(\cosh x) = \sinh x\).
For the term \(\sqrt{\cosh x}\), use the chain rule for \(\sqrt{u}\), where \(u = \cosh x\).
\(\frac{d}{dx}(\sqrt{\cosh x}) = \frac{1}{2\sqrt{\cosh x}} \cdot \frac{d}{dx}(\cosh x) = \frac{1}{2\sqrt{\cosh x}} \cdot \sinh x = \frac{\sinh x}{2\sqrt{\cosh x}}\).
Combining the derivatives of the terms on the RHS:
\(\frac{d}{dx}(\cosh x + \sqrt{\cosh x}) = \sinh x + \frac{\sinh x}{2\sqrt{\cosh x}}\).
Equating the derivatives of both sides:
\[
2y \frac{dy}{dx} = \sinh x + \frac{\sinh x}{2\sqrt{\cosh x}}
\]
Step 3: Factor out \(\sinh x\) and simplify the expression.
Factor out \(\sinh x\) from the terms on the RHS:
\[
2y \frac{dy}{dx} = \sinh x \left(1 + \frac{1}{2\sqrt{\cosh x}}\right)
\]
Combine the terms inside the parenthesis by finding a common denominator:
\[
2y \frac{dy}{dx} = \sinh x \left(\frac{2\sqrt{\cosh x}}{2\sqrt{\cosh x}} + \frac{1}{2\sqrt{\cosh x}}\right)
\]
\[
2y \frac{dy}{dx} = \sinh x \left(\frac{2\sqrt{\cosh x} + 1}{2\sqrt{\cosh x}}\right)
\]
Step 4: Solve for \(\frac{dy}{dx}\).
Divide both sides by \(2y\):
\[
\frac{dy}{dx} = \frac{\sinh x (2\sqrt{\cosh x} + 1)}{2y \cdot (2\sqrt{\cosh x})}
\]
\[
\frac{dy}{dx} = \frac{\sinh x (1 + 2\sqrt{\cosh x})}{4y\sqrt{\cosh x}}
\]
The final answer is $\boxed{\frac{\sinh x(1+2\sqrt{\cosh x})}{4y\sqrt{\cosh x}}}$.