Given:
\[
(3 + 4i)^{2025} = 5^{2023} (x + iy).
\]
First, find the modulus of $3 + 4i$:
\[
|3 + 4i| = \sqrt{3^2 + 4^2} = 5.
\]
Therefore,
\[
|(3 + 4i)^{2025}| = |3 + 4i|^{2025} = 5^{2025}.
\]
From the equation:
\[
5^{2025} = 5^{2023} |x + iy| \implies |x + iy| = \frac{5^{2025}}{5^{2023}} = 5^2 = 25.
\]
Hence,
\[
\sqrt{x^2 + y^2} = 25.
\]
So, the correct answer is 25.