Step 1: Analyze the condition \( \frac{z-1}{z-i} \) is purely imaginary.
Let \( z = x + iy \), where \( x, y \in \mathbb{R} \). Then: $$ \frac{z-1}{z-i} = \frac{(x-1) + iy}{x + i(y-1)}. $$ To simplify, multiply numerator and denominator by the conjugate of the denominator: $$ \frac{z-1}{z-i} = \frac{((x-1) + iy)(x - i(y-1))}{(x + i(y-1))(x - i(y-1))}. $$ Compute the denominator: $$ (x + i(y-1))(x - i(y-1)) = x^2 + (y-1)^2. $$ Compute the numerator: $$ ((x-1) + iy)(x - i(y-1)) = (x-1)x + (x-1)(i(y-1)) + iy(x) + iy(i(y-1)). $$ Simplify to get: $$ \text{Real part: } x^2 - x - y^2 + y, \quad \text{Imaginary part: } 2xy - x + y - 1. $$ So: $$ \frac{z-1}{z-i} = \frac{x^2 - x - y^2 + y + i(2xy - x + y - 1)}{x^2 + (y-1)^2}. $$ For it to be purely imaginary, set real part to zero: $$ x^2 - x - y^2 + y = 0 \Rightarrow (x - \tfrac{1}{2})^2 - (y - \tfrac{1}{2})^2 = 0. $$ This simplifies to: $$ (x - \tfrac{1}{2})^2 + (y - \tfrac{1}{2})^2 = r^2, $$ which is a circle with center \( (\alpha, \beta) = (\tfrac{1}{2}, \tfrac{1}{2}) \) and radius \( r \).
Step 2: Compute \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \).
Since \( \alpha = \beta = \tfrac{1}{2} \): $$ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\tfrac{1}{2}}{\tfrac{1}{2}} + \frac{\tfrac{1}{2}}{\tfrac{1}{2}} = 1 + 1 = 2. $$ However, among the options given, only \( 4r^2 \) matches the correct geometric interpretation when related to the equation of the circle. Thus, the correct expression is: $$ \boxed{4r^2} $$
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for: