Step 1: Use Vieta's formulas.
Given the cubic equation:
$$
x^3 + px^2 + qx + r = 0,
$$
the roots $ \alpha, \beta, \gamma $ satisfy:
$$
\alpha + \beta + \gamma = -p, \quad \alpha\beta + \beta\gamma + \gamma\alpha = q, \quad \alpha\beta\gamma = -r.
$$
Step 2: Use identity for sum of cubes.
We use:
$$
\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma + (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha).
$$
Step 3: Compute $ \alpha^2 + \beta^2 + \gamma^2 $.
$$
\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = p^2 - 2q.
$$
Now substitute into the identity:
$$
\alpha^3 + \beta^3 + \gamma^3 = 3(-r) + (-p)\left((p^2 - 2q) - q\right) = -3r - p(p^2 - 3q).
$$
Simplify:
$$
\alpha^3 + \beta^3 + \gamma^3 = -3r - p^3 + 3pq = 3pq - 3r - p^3.
$$
Step 4: Final Answer.
$$
\boxed{3pq - 3r - p^3}
$$