If $ \alpha $, $ \beta $, and $ \gamma $ are the angles made by a vector with the $ x $-, $ y $-, and $ z $-axes respectively, then find the value of $ \sin^2\alpha + \sin^2\beta $.
Show Hint
When dealing with direction cosines, always use the fundamental property $ \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1 $ and the Pythagorean identity $ \sin^2\theta + \cos^2\theta = 1 $.