Substitute $\theta = \frac{\pi}{2}$:
\[
\cos \frac{\pi}{2} = 0, \quad \sin \frac{\pi}{2} = 1.
\]
Evaluate the first term:
\[
\frac{\cos \theta + i \sin \theta}{\sin \theta + i \cos \theta} = \frac{0 + i \times 1}{1 + i \times 0} = \frac{i}{1} = i.
\]
Thus,
\[
% Option
(i)^{2024} = (i^4)^{506} = 1^{506} = 1.
\]
Evaluate the second term:
\[
\frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta + i \sin \theta} = \frac{1 + 0 + i \times 1}{1 - 0 + i \times 1} = \frac{1 + i}{1 + i} = 1.
\]
So,
\[
1^{2025} = 1.
\]
Therefore,
\[
x + iy = 1 + 1 = 2.
\]
Since $x + y = 2$, the correct answer is 2.