Given the function
\[
f(x) = \frac{[x] - 1}{\sqrt{[x]^2 - [x] - 6}}
\]
where $[x]$ denotes the greatest integer function (floor function). For $f(x)$ to be real valued, the expression under the square root must be non-negative and the denominator must not be zero.
Set $n = [x]$, then:
\[
n^2 - n - 6 \geq 0
\]
Factorizing:
\[
(n - 3)(n + 2) \geq 0
\]
This inequality holds when
\[
n \leq -2 \quad \text{or} \quad n \geq 3.
\]
But the denominator cannot be zero:
\[
n^2 - n - 6 \neq 0 \implies n \neq 3, -2.
\]
Therefore, valid integer values of $n$ are:
\[
n \leq -3 \quad \text{or} \quad n \geq 4.
\]
Since $n = [x]$, for
\[
n \leq -3 \Rightarrow x<-2,
\]
and
\[
n \geq 4 \Rightarrow x \geq 4.
\]
Also, the numerator must be defined, so values where $[x] = 1$ are allowed, but we must check if the denominator is defined at $[x] = 1$:
\[
1^2 - 1 - 6 = 1 - 1 - 6 = -6<0,
\]
so it is not valid.
Finally, the solution set for $x$ becomes:
\[
[-1, 2) \cup [4, \infty)
\]
considering the floor values and the domain restrictions.
Hence, the domain of $x$ such that $f(x)$ is real valued is $[-1, 2) \cup [4, \infty)$.