Step 1: Recall the relationship between adjoint and determinant.
We know that:
$$
A \cdot adj(A) = \det(A) \cdot I
\quad \text{and} \quad
\det(adj(A)) = (\det(A))^{n-1},
$$
where \( n \) is the size of the matrix.
Given:
- \( P = adj(A) = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix} \),
- \( \det(A) = 4 \),
- \( n = 3 \).
So:
$$
\det(P) = (\det(A))^2 = 4^2 = 16.
$$
Step 2: Compute \( \det(P) \) explicitly.
Compute:
$$
\det(P) =
\begin{vmatrix}
1 & \alpha & 3 \\
1 & 3 & 3 \\
2 & 4 & 4
\end{vmatrix}.
$$
Expand along the first row:
$$
\det(P) =
1 \cdot \begin{vmatrix} 3 & 3 \\ 4 & 4 \end{vmatrix}
- \alpha \cdot \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}
+ 3 \cdot \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}.
$$
Now compute the minors:
\( \begin{vmatrix} 3 & 3 \\ 4 & 4 \end{vmatrix} = 12 - 12 = 0 \),
\( \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = 4 - 6 = -2 \).
Substitute back:
$$
\det(P) = 1 \cdot 0 - \alpha \cdot (-2) + 3 \cdot (-2)
= 0 + 2\alpha - 6 = 2\alpha - 6.
$$
Set equal to 16:
$$
2\alpha - 6 = 16 \Rightarrow 2\alpha = 22 \Rightarrow \alpha = 11.
$$
Step 3: Final Answer.
$$
\boxed{11}
$$