Question:

Evaluate \( \int \frac{\sec^2 x}{\sin^7 x} \, dx - \int \frac{7}{\sin^7 x} \, dx \):

Show Hint

Sometimes, rather than solving directly, differentiating the options can help verify the correct antiderivative. Use this when the integral is complicated or resembles a standard pattern.
Updated On: Jun 4, 2025
  • \( \frac{1}{\sin^6 x \cos x} + c \)
  • \( \frac{\tan x}{\sin^8 x} + c \)
  • \( \sin^8 x \cos x + c \)
  • \( \sec x \tan^7 x + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given: \[ \int \frac{\sec^2 x}{\sin^7 x} \, dx - \int \frac{7}{\sin^7 x} \, dx = \int \left( \frac{\sec^2 x - 7}{\sin^7 x} \right) dx \] Now, check the derivative of: \[ f(x) = \frac{1}{\sin^6 x \cos x} \] Differentiate using the product and chain rules. We get: \[ \frac{d}{dx} \left( \frac{1}{\sin^6 x \cos x} \right) = \frac{\sec^2 x - 7}{\sin^7 x} \] Hence, \[ \int \left( \frac{\sec^2 x - 7}{\sin^7 x} \right) dx = \frac{1}{\sin^6 x \cos x} + c \]
Was this answer helpful?
0
0