Given:
\[
\int \frac{\sec^2 x}{\sin^7 x} \, dx - \int \frac{7}{\sin^7 x} \, dx = \int \left( \frac{\sec^2 x - 7}{\sin^7 x} \right) dx
\]
Now, check the derivative of:
\[
f(x) = \frac{1}{\sin^6 x \cos x}
\]
Differentiate using the product and chain rules. We get:
\[
\frac{d}{dx} \left( \frac{1}{\sin^6 x \cos x} \right) = \frac{\sec^2 x - 7}{\sin^7 x}
\]
Hence,
\[
\int \left( \frac{\sec^2 x - 7}{\sin^7 x} \right) dx = \frac{1}{\sin^6 x \cos x} + c
\]