Step 1: Rewrite the given relation.
The given relation is \((r_1 - r_3)(r_1 - r_2) - 2r_2r_3 = 0\).
Rearrange it as:
\[
(r_1 - r_3)(r_1 - r_2) = 2r_2r_3
\]
Step 2: Express the exradii in terms of area and semi-perimeter.
We know the formulas for the exradii \(r_1, r_2, r_3\) in terms of the area of the triangle \(\Delta\) and the semi-perimeter \(s = \frac{a+b+c}{2}\):
\[
r_1 = \frac{\Delta}{s-a}, \quad r_2 = \frac{\Delta}{s-b}, \quad r_3 = \frac{\Delta}{s-c}
\]
Substitute these into the rewritten equation:
\[
\left(\frac{\Delta}{s-a} - \frac{\Delta}{s-c}\right)\left(\frac{\Delta}{s-a} - \frac{\Delta}{s-b}\right) = 2\left(\frac{\Delta}{s-b}\right)\left(\frac{\Delta}{s-c}\right)
\]
Factor out \(\Delta^2\) from both sides (assuming \(\Delta \ne 0\), which is true for a triangle):
\[
\Delta^2 \left(\frac{1}{s-a} - \frac{1}{s-c}\right)\left(\frac{1}{s-a} - \frac{1}{s-b}\right) = 2\Delta^2 \left(\frac{1}{s-b}\right)\left(\frac{1}{s-c}\right)
\]
Divide by \(\Delta^2\):
\[
\left(\frac{1}{s-a} - \frac{1}{s-c}\right)\left(\frac{1}{s-a} - \frac{1}{s-b}\right) = \frac{2}{(s-b)(s-c)}
\]
Combine the terms within the parentheses:
\[
\left(\frac{(s-c) - (s-a)}{(s-a)(s-c)}\right)\left(\frac{(s-b) - (s-a)}{(s-a)(s-b)}\right) = \frac{2}{(s-b)(s-c)}
\]
Simplify the numerators:
Since \(s-c - (s-a) = s-c-s+a = a-c\), and \(s-b - (s-a) = s-b-s+a = a-b\).
\[
\left(\frac{a-c}{(s-a)(s-c)}\right)\left(\frac{a-b}{(s-a)(s-b)}\right) = \frac{2}{(s-b)(s-c)}
\]
Multiply both sides by \((s-b)(s-c)\) to clear denominators:
\[
\frac{(a-c)(a-b)}{(s-a)^2} = 2
\]
Step 3: Substitute \(s-a\) and simplify the equation.
We know \(s = \frac{a+b+c}{2}\), so \(s-a = \frac{a+b+c}{2} - a = \frac{a+b+c-2a}{2} = \frac{b+c-a}{2}\).
Substitute this into the equation:
\[
\frac{(a-c)(a-b)}{\left(\frac{b+c-a}{2}\right)^2} = 2
\]
\[
\frac{4(a-c)(a-b)}{(b+c-a)^2} = 2
\]
\[
\frac{2(a-c)(a-b)}{(b+c-a)^2} = 1
\]
\[
2(a-c)(a-b) = (b+c-a)^2
\]
Step 4: Expand and simplify the equation to find \(a^2 - b^2\).
Expand both sides:
Left side: \(2(a^2 - ab - ac + bc) = 2a^2 - 2ab - 2ac + 2bc\)
Right side: \((b+c-a)^2 = ((b+c) - a)^2 = (b+c)^2 - 2a(b+c) + a^2\)
\[
= b^2 + c^2 + 2bc - 2ab - 2ac + a^2
\]
Set the expanded left side equal to the expanded right side:
\[
2a^2 - 2ab - 2ac + 2bc = a^2 + b^2 + c^2 + 2bc - 2ab - 2ac
\]
Move all terms to one side:
\[
2a^2 - a^2 - 2ab + 2ab - 2ac + 2ac + 2bc - 2bc - b^2 - c^2 = 0
\]
Combine like terms:
\[
a^2 - b^2 - c^2 = 0
\]
Rearrange the terms to find \(a^2 - b^2\):
\[
a^2 - b^2 = c^2
\]
The final answer is } \boxed{c^2}.