Step 1: Simplify the integrand using identity
We know the identity:
\[
1 - \cos 2x = 2 \sin^2 x
\]
So,
\[
\sqrt{1 - \cos 2x} = \sqrt{2 \sin^2 x} = \sqrt{2} |\sin x|
\]
Step 2: Rewrite the integral
\[
\int_0^{400\pi} \sqrt{1 - \cos 2x} \, dx = \int_0^{400\pi} \sqrt{2} |\sin x| \, dx = \sqrt{2} \int_0^{400\pi} |\sin x| \, dx
\]
Step 3: Use periodicity of \( |\sin x| \)
The function \( |\sin x| \) is periodic with period \( \pi \). Over each interval of length \( \pi \), we have:
\[
\int_0^{\pi} |\sin x| \, dx = \int_0^{\pi} \sin x \, dx = 2
\]
Step 4: Calculate total contribution over 400 periods
\[
\int_0^{400\pi} |\sin x| \, dx = 400 \cdot 2 = 800
\]
Step 5: Multiply by \( \sqrt{2} \)
\[
\int_0^{400\pi} \sqrt{1 - \cos 2x} \, dx = \sqrt{2} \cdot 800 = 800\sqrt{2}
\]